
A Boolean Formula Seeker in the Context of1

Acquiring Maps of Interrelated Conjectures on2

Sharp Bounds3

Ramiz Gindullin # Ñ4

IMT Atlantique, LS2N (TASC), Nantes, France5

Abstract6

A component of Bound Seeker [1] is Boolean formula seeker, a part devoted to search for arithmetic-7

Boolean formulae. Here, a arithmetic-Boolean formula involves n arithmetic conditions linked by8

a single commutative logical operator or by a sum. Part of the originality of the Boolean formula9

seeker is that it was synthesised by a constraint program. This extended abstract includes (i) the10

type of arithmetic-Boolean formulae we consider, (ii) the importance of allowing arithmetic-Boolean11

formulae in the context of maps of conjectures, (iii) the components of the Boolean formula seeker,12

and (iv) a short description of the different steps of the acquisition process of arithmetic-Boolean13

formulae.14

2012 ACM Subject Classification • Computing methodologies Artificial intelligence Search methodo-15

logies • Mathematics of computing Discrete mathematics Combinatorics Combinatorial optimization16

17

Keywords and phrases Acquisition of conjectures18

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2319

Funding Ramiz Gindullin: funded by the EU-funded ASSISTANT project no. 101000165.20

Acknowledgements Supervisor: Nicolas Beldiceanu, Co-authors: Jovial Cheukam-Ngouonou, Rémi21

Douence, Ramiz Gindullin, Claude-Guy Quimper22

1 Type of arithmetic-Boolean formulae23

The Boolean formula seeker acquires arithmetic-Boolean formulae from a table with integer24

data. It explains a selected output column with respect to a subset of selected input columns,25

where the same explanation must hold for every row of the table. Acquired arithmetic-26

Boolean formulae involve n arithmetic conditions linked by a single commutative logical27

operator or by a sum, denoted by g :28

gn
i=1Ci, with g ∈ {∧, ∨, =,⊻, +} and n ≥ 1,29

where Ci is a condition mentioning arithmetic expressions using arithmetic functions such as30

min, max, mod , +. A condition such as s ≥ 2 is interpreted as an integer, i.e. either 0 for31

false or 1 for true.32

Throughout this extended abstract we use the following notations for some characteristics33

of a digraph G.34

v stands for number of vertices of G,35

a stands for the number of arcs of G,36

c stands for the number of connected components of G,37

c stands for number of vertices of the largest connected component of G,38

s stands for number of vertices of the smallest strongly connected component of G,39

s stands for number of vertices of the largest strongly connected component of G,40

c>1 stands for the number of connected components of G with more than one vertex,41

s>1 stands for the number of strongly connected components with more than one vertex.42

© Ramiz Gindullin;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ramiz.gindullin@imt-atlantique.fr
https://www.ls2n.fr/annuaire/Ramiz GINDULLIN/
 https://orcid.org/ 0000-0003-4947-9641
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Boolean Formula Seeker in the Context of Acquiring Maps of Interrelated Conjectures on Sharp Bounds

▶ Example 1 (Examples of acquired formulae for maps of interrelated conjectures). We now43

provide two examples of generated formulae.44

1. c = 1 + (((c − 2 · s) ≤ 0) ∧ ((c mod s) ≥ 1))45

2. c>1 = 2 − ((s = s) + (s = 1))46

2 Importance of arithmetic-Boolean formulae in maps of interrelated47

conjectures48

Bound Seeker is a CP-based system used for an acquisition of maps of conjectures for charac-49

teristics of combinatorial objects. Within Bound Seeker, the work on the Boolean formula50

seeker was motivated by the following observation. Quite often, Boolean arithmetic formulae51

are more appropriate than formulae involving polynomials: simpler Boolean arithmetic52

formulas are obtained, or a Boolean arithmetic formula is found, while a formula involving a53

polynomial could not be found.54

▶ Example 2. For instance, without using arithmetic-Boolean formulae (and conditionals),55

Bound Seeker obtains:56

a ≥ s>1 − c>1 + v, with57

s>1 = min(s − 1, 1),58

c>1 = min(min(c, 2), min(c, 2) + c − c − 1),59

v = min(c + c, c · c − c2 + c).60

By enabling arithmetic-Boolean formulae (and conditional formulae), Bound Seeker returns61

a simpler expression:62

a ≥ s>1 − c>1 + v with63

s>1 = (s ≥ 2),64

c>1 = (c ≥ 2) + ((c − c) ≥ 1),65

v = (if (c − c) = 0 then c, else c + c).66

3 Components of the Boolean formula seeker67

The Boolean formula seeker includes:68

1. A rule generation part, which generates rules preventing formulae to be rewritten into69

simpler formulae.70

2. A candidate arithmetic-Boolean formulae generation part, which produces parameterised71

candidates arithmetic-Boolean formulae containing a specific Boolean aggregator, a given72

number of terms, and a candidate set of arithmetic conditions.73

3. A model generation part, which produces a constraint model corresponding to a given74

candidate formula generated by Part (2).75

4 Steps of the Boolean formula acquisition process76

The Boolean formulae acquisition process consists of the following steps:77

1. Generating rules that prevent formulae to be rewritten into simpler formulae. This step is78

performed only once and generates rules that can be used for acquiring arithmetic-Boolean79

formulae.80

2. This second step generates the list of candidate formulae that can potentially explain an81

output column given a set of input columns for every entry of a table.82

3. For each type of arithmetic-Boolean condition, this step calculates sets of possible83

coefficient values.84

Ramiz Gindullin 23:3

4. This step enumerates through the list of candidate formulae in order to:85

a. Generate the constraint model and create a cost criteria reflecting the simplicity of86

the formula;87

b. Post constraints on coefficient variables based on sets calculated in Step 3;88

c. Post constraints related to the rules generated in Step 1;89

d. Solve the constraint model and minimise its cost.90

4.1 Rule generation that prevent rewriting91

While these rules were initially handwritten, they are now automatically generated by a92

rule generation system. This rule generation system is a constraint program that finds rules93

belonging to one of the following families:94

1. [only for g ∈ ∧, ∨] Such rules avoid generating an arithmetic-Boolean condition that95

supercedes another arithmetic-Boolean condition. e.g., prevent from generating [[(c−c) ≥96

2] ∧ [c ≥ c]] as it can be simplified to [(c − c) ≥ 2].97

2. [for all g] Such rules avoid generating an arithmetic-Boolean condition of the form98

cond1 g cond2 which is always true or always false. e.g. assuming that v > 0, c > 0, d > 199

then [[v ≤ c] ∧ [d · v ≥ c]] is always false.100

3. [for all g] Such rules avoid generating other simplifiable arithmetic-Boolean conditions101

cond1 g cond2 that do not belong to families 1 or 2. It means that there is another102

arithmetic-Boolean condition that is preferable, e.g.103

[[v ≥ d] ∨ [v = d − 1]] is not generated as it can be simplified to [v ≥ d − 1];104

d > 1 : [[|c − s| ≤ c] ∧ [c ≤ s]] is not generated as it can be rewritten as d > 1 : [[s − c ≤105

d] ∧ [c ≤ s]].106

For the Boolean formula seeker we initially created 75 handwritten rules. The rule107

generation system found 3768 rules. These rules were combined with 14 handwritten rules108

that were outside the scope of the rule generator.109

4.2 Candidate formulae generation part110

All conjectures we generate have the form characteristic op formula, where op is one of the111

comparison operators ≤, =, ≥, and formula is a formula involving a set of characteristics.112

Consequently, formulae are described by the following set of simplified grammar rules, where113

“Small Capitals” indicates a non-terminal symbol, “Roman” denotes a function or a known114

constant, “Bold” denotes an unknown integer constant.115

Formula ::= cst | Bool | cst + Bool | Cond | Pol | PolBinary | PolUnary116

Bool ::= BoolOp(BoolConds) | ¬BoolOp(BoolConds)117

BoolOp ::= ∧| ∨ | = | ⊻ |+118

BoolConds ::= BoolCond, BoolConds | BoolCond119

BoolCond ::= Param Cmp cst120

Cmp ::= ≤ | = | ≥ | ̸=121

Params ::= Param∗
122

Param ::= Char|BTerm|UTerm123

Char ::= v|c|c|c|s|s|s124

BTerm ::= Bt(Char, Char)125

UTerm ::= sum_consec(Char) | Ut(Char, cst) | Char ∈ [cst, cst]126

Bt ::= min | max | floor | ceil | mod | cmod | dmod | prod127

Ut ::= min | max | floor | ceil | mod | geq | power128

CVIT 2016

23:4 A Boolean Formula Seeker in the Context of Acquiring Maps of Interrelated Conjectures on Sharp Bounds

For performance reasons, the candidate formula generator first produces candidate129

formulae that do not mention the mod function.130

4.3 Calculation of sets of possible coefficient values131

The goal of this step is to restrict the search space for unknown integer constants cst. For132

this purpose we take advantage of the values present in the source table itself. For example,133

for the Boolean condition c mod s =cst, we compute the set of possible values of cst from134

the pair of values of c and s from each entry of the table, and from the mod function.135

4.4 Model generation part136

Given a candidate arithmetic-Boolean formula for which the coefficients are not yet known,137

and a table for which the Boolean formula has to hold on every row, the system produces a138

constraint model using the following steps.139

1. For each arithmetic-Boolean condition BoolCond in BoolConds, a set of variables is140

created. This set includes attribute indices and coefficients that the arithmetic expression141

uses. If the Boolean condition is unused in the final formula, then these variables are set142

to some default values. Depending on the number of attributes involved in an BoolCond,143

it can either be a unary, binary or ternary term. For some types of Boolean conditions,144

we post an additional constraints to prevent the generation of either always true or false145

conditions, or conditions that can be rewritten to a simpler condition. Each Boolean146

condition has a cost defined by the arithmetic operators used, and by the sum of the147

absolute values of its coefficients. Such cost is minimised.148

2. For each BoolCond i we create an integer variable bi. Variable bi denotes whether the149

Boolean condition i is150

unused in the final formula,151

used in the final formula,152

used in the final formula in its negated form.153

The number of used arithmetic-Boolean conditions, whether negated or not, must be154

equal to the selected number of terms n of the arithmetic-Boolean formula.155

3. For each created BoolCond i and table row j, a Boolean variable bi,j denotes whether156

or not the Boolean condition i is true or false for the j-th row of the table.157

4. For each table row j a constraint is put on all bi and bi,j that ensures that the calculated158

value of the result formula corresponds to the value of the output column for this row.159

This constraint considers the selected aggregator g and the fact that the condition is160

negated or not.161

5. To ensure the production of non-simplifiable formulae, we add the following constraints:162

Constraints that restrict the usage of unary, binary or ternary conditions depending on163

the number of input parameters and the number of terms n. As all input parameters164

must be used, there are cases where the use of certain types of arithmetic-Boolean165

conditions is infeasible. e.g. if we have six input parameters and three conditions166

then unary arithmetic-Boolean conditions must be discarded; or if we have two input167

parameters and one condition then unary and ternary conditions must be discarded168

from consideration.169

Symmetry breaking constraints between two arithmetic-Boolean conditions of the same170

type.171

Constraints that limit the search space for unknown integer constants cst using the172

sets calculated during Step 3.173

Ramiz Gindullin 23:5

Constraints that prevent the generation of Boolean conditions pairs that can be174

simplified. These constraints are based on the rules generated during Step 1.175

5 Conclusion176

Out of 552 combinations of input characteristics for which Bound Seeker tried to find177

a sharp bound, using only polynomials, it got at least one sharp bound for 428 com-178

binations of characteristics, as well as 2211 conjectures. Using also arithmetic-Boolean179

and conditional expressions it found 3 extra bounds and 93 new conjectures. Using180

arithmetic-Boolean and conditional expressions generates 3.8% new formulae compared181

to when using polynomials alone; moreover, 31.07% of the formulae that use polynomials182

are replaced by simpler formulae that use arithmetic-Boolean or conditionals expressions.183

In future work, the formula seeker may also use the Boolean formula seeker to acquire184

more complex formulae such as for instance185

v = (if c = 1 then 0, else if ((c = s) ∨ (2 · s ≤ c)) then 1, else 2).186

References187

1 Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin, and Claude-188

Guy Quimper. Acquiring maps of interrelated conjectures on sharp bounds. In The 28th189

International Conference on Principles and Practice of Constraint Programming, July 31–Au-190

gust 5, 2022, Haifa, Israel, 2022.191

CVIT 2016

	1 Type of arithmetic-Boolean formulae
	2 Importance of arithmetic-Boolean formulae in maps of interrelated conjectures
	3 Components of the Boolean formula seeker
	4 Steps of the Boolean formula acquisition process
	4.1 Rule generation that prevent rewriting
	4.2 Candidate formulae generation part
	4.3 Calculation of sets of possible coefficient values
	4.4 Model generation part

	5 Conclusion

