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Abstract9

This paper deals with the multi-agent path finding (MAPF) problem for a team of tethered robots.10

When considering point-sized robots, paths may share a same subpath provided that they do not11

cross, and we have shown in a previous work that this case basically involves solving an assignment12

problem: The objective is to find a set of non-crossing paths, and the makespan is equal to the length13

of the longest path. In this work, we extend it to the case of non-point-sized robots where robot14

paths must be synchronized when they share a same subpath and waiting times are considered when15

computing the makespan. We prove that the upper bound can be computed by solving the linear16

sum assignment problem. We introduce a new variable neighborhood search method to improve17

the upper bound and show that it is robust to different instances. We also introduce a Constraint18

Programming model for solving the problem to optimality.19
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1 Introduction26

Multi-agent path finding (MAPF) is a very active research topic which has important applic-27

ations for robotics in industrial contexts (e.g., transport in fulfillment centers, autonomous28

tug robots). The goal of MAPF is to find a set of paths from starting points to target29

points while minimizing the makespan (length of the longest path). In [6], we introduced an30

extension of MAPF for tethered robots, where robots are attached with flexible cables to31

anchor points (which are starting points), and the main difficulty comes from the fact that32

robots must not cross cables. We have shown that this problem is related to an Euclidean33

bipartite matching problem, and that we can compute feasible solutions that provide upper34

bounds in polynomial time, by solving the Linear Sum Assignment Problem (LSAP). An35

approach based on the sequential combination of Variable Neighborhood Search (VNS) and36

Constraint Programming (CP) was introduced to solve the problem to optimality.37

In [6], we considered point-sized robots, so that two paths may share a same subpath38

provided that they do not cross. This simplifying assumption on the physical form of the39

robots is far from reality. In this paper, we extend this work by studying the effect of40

robots’ size on the makespan in a real-world application case. In this case, a robot cannot41
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Figure 1 (a): Ai and Di with i = 1, 2 represent the anchor points and the destinations. The
dark grey rectangles are obstacles. In previous work, the makespan is defined as the maximum
length between the red path π1 and the blue path π2. When robots’ physical shape is considered,
we impose a time delay dt when two robots share a same subpath. In this example, the blue path
has higher priority at point B and C, while the red path is prioritized at E. To avoid getting
crossed, the red robot should wait the blue one to pass B and C first, and the blue wait at E
until the red robot has passed it, as showed in (b) and (c). Hence the makespan can be noted as
max{|A1B| + dt, |A2B|} + |BC| + |CE| + max{|ED2| + dt, |ED1|}. We assume that the robots move
at a constant velocity, therefore dt here in fact refers to a distance as dt × velocity. (d): a deadlock
occurs if we exchange the positions of A2 and D2: the red robot should wait the blue one to pass B
first, while the blue one cannot pass E before the red robot.

travel between an obstacle and a cable if the distance between the cable and the obstacle is42

smaller than its size. As a consequence, we must ensure that the robot which is closer to the43

obstacle traverses the subpath first, and a minimal safety delay must be ensured with the44

other robot, as shown in Fig. 1.45

Related work and Contributions46

Although the classic MAPF problem has been widely studied [4, 8, 10, 11], the case of tethered47

robots has been less studied. For the motion planning of a single tethered robot, recent48

studies mainly focus on finding the shortest path given the initial and final configurations49

[7], and planning paths for coverage and exploration tasks [9]. When considering multiple50

tethered robots, the challenge is that cables can easily get tangled, and the constraint to51

avoid such crossing makes the planning harder. In the work of Hert and Lumelsky [1, 2, 3],52

a problem of motion planning for circular robots moving on polygonal planar surface is53

considered, where cables in the workspace can be pushed and bent by robots. The objective54

is to find a set of non-intersecting curves connecting a set of point pairs in the plane. The55

authors design efficient algorithms to detect if two paths are intersecting or not, from a purely56

geometric standpoint. Given a target configuration, robots are prioritized and scheduled to57

move sequentially in straight lines to avoid crossing. However, there is no guarantee that a58

non-cyclic ordering can be always found. In [12], the authors investigate the feasibility of a59

target configuration by different motion modes. They propose algorithms to detect deadlocks60

in a target configuration and iteratively remove them by restricting the motion of robots61

involved in a deadlock situation until a valid solution is found.62

In this work, we also impose a priority relationship between robots, assuming that robots63

with lower priority must wait until the ones with higher priorities have passed. Compared64

to the point-sized case studied in [6], this changes the definition of makespan, as robot’s65

motion should be synchronized with respect to their priority. As a first contribution, we66

study the topological relationship of two polygonal lines in a 2D Euclidean plane in order to67

decide whether two paths cross as well as their priority from a geometrical point of view.68

This problem was also investigated in [3, 12] and it is remarked that deadlocks might appear69
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if we adopt a sequential motion mode between robots (as illustrated on the right part of70

Fig. 1). We use a topological sort and post a NoCircuit constraint on the constructed graph71

to avoid such deadlocks. As a second contribution, we prove that the optimal solution of72

LSAP cannot contain deadlocks and thus provides an upper bound for the problem. As a73

third contribution, we introduce a VNS algorithm to improve the LSAP solution and a CP74

model to improve the VNS solution and prove optimality.75

2 Preliminaries76

In this section, we formally describe the non-crossing MAPF problem for non point-sized77

robots. Robots move on a 2 dimensional workspace W ⊂ R2 defined by a bounding polygon78

B and a set of convex obstacles O: every obstacle in O is a polygon within B, and W is79

composed of every point in B that does not belong to an obstacle in O. There are n robots80

such that each robot is attached with a flexible cable to an anchor point in W and we denote81

A the set of n anchor points. We denote D the set of n destinations. As the length of a robot82

path cannot be smaller than the length of its cable position, we can simplify our problem83

by assuming that the path of a robot is its cable position. Hence, we search for paths in a84

visibility graph which has a vertex for each point of W which is either a polygon vertex or a85

point in A ∪ D, and an edge between every pair of vertices {i, j} such that the straight line86

segment between i and j fully belongs to W [5].87

We use geometrical properties to define priority relations between paths that share a same88

vertex. We do not detail this computation due to lack of space but simply illustrate it on89

the left part of Figure 1. The paths π1 = ⟨A1, B, C, E, D1⟩ and π2 = ⟨A2, B, C, E, D1⟩ share90

vertices B, C, and E. For B and C, π2 has a higher priority than π1 because ⟨A2, B, C, E⟩91

is closer to the upper-left obstacle than ⟨A1, B, C, E⟩. This is denoted π1(B) ≺ π2(B) and92

π1(C) ≺ π2(C). For E, π1 has a higher priority than π2 because ⟨C, E, D1⟩ is closer to the93

lower-right obstacle than ⟨C, E, D2⟩. This is denoted π2(E) ≺ π1(E).94

Priority relations are used to define a priority graph.95

▶ Definition 1 (Priority graph). The priority graph associated with a set of non-crossing96

paths (π1, .., πn) is the directed graph G = (V, E) such that vertices are the nodes labeled by97

the path to which they belong, i.e., V = {(wi, πj)|wi ∈ πj} and edges correspond to the node98

pairs with known priority order, i.e., E = {(u, v) ∈ V × V |u ≺ v}. The graph is directed99

because edges are directed from nodes with lower priority to those with higher priority.100

This definition is similiar to the the Pair Interaction Graph in [12]. For two paths π1101

and π2, there might be different priority order at different nodes, this is to say, there is102

not necessarily a consistent priority order between two paths. We can thus infer that given103

a target configuration composed by robots’ paths {π1, π1, .., πn} mutually nonintersecting,104

there might be a deadlock for robots’ motion. A deadlock exists if the priority graph contains105

cycles, as shown in Fig. 2.106

The goal of NC-MAPF problem is to find a path for each robot, starting from its anchor107

point and reaching a different destination such that (i) paths do not cross each other, (ii) the108

associated priority graph does not contain cycles, and (iii) the arrival time of the last robot109

is minimized given that, when two robots Ri and Rj must pass through a same vertex v such110

that Ri(v) ≺ Rj(v), the arrival time of Ri on v must be larger than or equal to the arrival111

time of Rj on v plus δt (where δt is a fixed amount of time which depends on robots’ size).112

CVIT 2016
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Figure 2 An example of deadlock situation. Left: R1 should pass B after R2, meanwhile, R2 can’t
pass D until R1 has passed it. Right, the corresponding directed graph for robots’ motion priority
order, for example, A → B means node A is traversed before node B; when two robots pass a common
node, this priory order is deduced with the definition. B(R1) → D(R1) → D(R2) → B(R2) → B(R1)
forms a loop and it implies that a deadlock exists when robots move.

3 Methodology113

We solve our problem in three steps: we first compute an upper bound in polynomial time by114

solving an LSAP problem; then we improve this bound by VNS; and finally we compute the115

optimal solution with CP. We briefly describe these steps in this section, without detailing116

proofs or algorithms due to lack of space.117

3.1 Computation of an initial upper bound118

For each anchor/destination couple (a, d) ∈ A × D, we compute the shortest path from a to119

d in the visibility graph, and we denote ca,d the length of this path.120

▶ Theorem 2. The matching m : A → D that minimizes
∑

a∈A ca,m(a) contains no deadlock.121

Indeed, given a set of paths, deadlocks can be always removed and the total cost decreases122

accordingly. Hence, the minimal matching cannot contain deadlocks. As we have shown123

in [6] that this minimal matching does not contain crossing paths, it provides an initial upper124

bound to our problem. It is computed in polynomial time by solving an LSAP problem,125

using the Hungarian algorithm.126

3.2 Improving the upper bound with VNS127

As proposed in [6], we can improve the matching that minimizes the sum of costs by128

performing a VNS: the neighborhood of a matching contains every non crossing matching129

obtained by permuting the destinations of k anchor points; k is initialized to 2 and it is130

incremented each time the current matching is locally optimal; k is reset to 2 each time131

an improving move has been found; the search is stopped when k exceeds a given upper132

bound kmax or when a time limit is reached. To adapt this VNS to non-point-sized robots,133

we simply have to modify the computation of the makespan to integrate waiting times in134

case of shared vertices.135

In [6], we show that VNS is able to quickly improve the upper bound for some instances136

whereas it does not improve much the upper bound for some other instances, depending on137

the distribution of anchor and destination points. This comes from the fact that VNS only138
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considers shortest paths while it is necessary to consider non-shortest paths to improve the139

upper bound for some instances. For this reason, we extend our approach: once the search is140

stopped (because kmax or a first time limit is reached), we perform a second VNS where the141

neighborhood is enlarged by taking into account non-shortest paths. As it would be too long142

to compute all possible paths, we focus on anchor points which are situated in a circle with143

a radius r from the anchor of the longest path, and we search for every taut path between144

one of these anchor points and a destination point whose length is smaller than the current145

upper bound.146

For the sake of clarity, we denote the basic VNS method as oldVNS, and the extended147

approach as newVNS.148

3.3 Computation of the optimal solution with CP149

As pointed out in [6], the optimal solution may use non-shortest paths. Given an upper150

bound ub, We denote Pub the set of all relevant paths that may belong to the optimal solution151

(see [6] for more details on how to compute this set). For each path π ∈ Pub, o(π) and d(π)152

denote the origin and the destination, respectively. Our CP model uses the same variables153

as the one introduced in [6]: for each anchor point ai ∈ A, the integer variable xi represents154

the destination associated with ai and the integer variable zi represents the path that links155

ai to xi. The initial domains of these variables are D(xi) = {d(π) : π ∈ Pub ∧ o(π) = ai} and156

D(zi) = {π ∈ P : o(π) = ai}. The integer variable m represents the makespan and its domain157

is [0, ub]. We introduce new variables for taking into account waiting times due to shared158

vertices: for each pair of anchor points {ai, aj} ⊆ A, the integer variable yi,j represents the159

maximum duration of the two paths zi and zj , including the waiting times due to shared160

vertices.161

Like in [6], we channel xi and zi variables by posting xi = d(zi) and we post a redundant162

allDifferent({xi : ai ∈ A}) constraint.163

z and y variables are related thanks to a table constraint. For each couple of anchor164

points (ai, aj) ∈ A2, we pre-compute the table Ti,j that contains every triple (πi, πj , t) ∈165

D(zi) × D(zj) × [0, ub] such that (i) d(πi) ̸= d(πj), (ii) path πi does not cross path πj , (iii)166

paths πi and πj do not have deadlocks, and (iv) t is the maximum duration of the two167

paths πi and πj , including waiting times due to shared vertices. For each pair of anchor168

points {ai, aj} ⊆ A, we post a table constraint (zi, zj , yi,j) ∈ Tij , and we post the constraint169

m ≥ yi,j .170

The solution that minimises m is not necessarily the optimal solution of our problem.171

Indeed, table constraints ensure that (i) there is no crossing path; (ii) there is no deadlock172

between 2 paths; and (iii) m takes into account waiting times due to pairs of paths that have173

common vertices. However, deadlocks may be due to a circular dependency between more174

than 2 paths (as illustrated in Figure 2). Also, in the case of dependency chains of more175

than 2 paths (e.g., when R1 must wait for R2 at some vertex, and R2 must wait for R3 at176

some other vertex), the makespan may be larger than y1,2 and y2,3. In Sections 3.3.1 and177

3.3.2, we describe two different approaches to integrate these constraints.178

3.3.1 A posteriori approach179

In this approach, we enumerate all solutions of the model described above and, each time a180

solution is found, we proceed as follows:181

If this solution implies a deadlock (i.e., the associated priority graph contains a cycle), we182

search for the minimum set of anchor points whose associated paths cause this deadlock,183

CVIT 2016
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Figure 3 The illustration of different distribution for generating instances. Left: U-Instance,
Middle: B-Instance, Right: A-Instance. For A-Instance, anchor points are randomly generated with
their abscissas being equally constrained in [0, 20] ∪ [40, 60] ∪ [120, 140], and destinations are equally
distributed in [80, 100] ∪ [140, 160] ∪ [180, 200].

and we add a nogood constraint to prevent the search from enumerating again the values184

of these anchor points;185

If there is no deadlock, we compute the makespan M of this solution;186

If M ≥ ub, we search for the minimum set of anchor points whose associated paths187

lead to this makespan, and we add a nogood constraint to prevent the search from188

enumerating again the values of these anchor points;189

If M < ub, we set ub to M and post the constraint m < ub.190

3.3.2 Global Constraint191

In this approach, we introduce a global constraint globalMakeSpan({zi : ai ∈ A}, m) which192

ensures that the set of paths {zi : ai ∈ A} does not contain any deadlock and that its193

associated makespan (i.e., the largest arrival time when including waiting times) is smaller194

than or equal to m. This constraint is propagated each time a variable zi is instantiated by195

(i) checking that zi does not cross previously selected paths; (ii) checking that zi does not196

create a cycle in the priority graph; and (iii) updating the lower bound of m if the makespan197

is increased due to zi.198

4 Experimental Results199

We evaluate our algorithms on randomly generated instances. For all instances, the bounding200

polygon is the square B = [0, 200]2. We introduce a parameter o to set the number of201

obstacles with o ∈ {5, 10, 15, 20}. To generate an instance with n robots, we randomly202

generate n anchor points and n destinations, and for each value of n, we generate 30 different203

instances. We consider three different kinds of distributions for generating anchor points204

and destinations, in order to study the impact of this distribution on solution hardness: for205

U instances, all points are uniformly distributed in the workspace; in B instances, anchor206

(resp. destination) points are uniformly distributed in the left (resp. right) part of the207

workspace; and in A instances, anchor and destination points are alternated (see Fig. 3 for an208

illustration). All experiments are run on an Intel Core Intel Xeon E5-2623v3 of 3.0GHz×16209

with 32GB of RAM.210

In Fig.4, we display the optimal makespan, the lower bound, and upper bounds computed211

by two different VNS methods as explained in section 3.2. In particular, the parameter of212

the neighbourhood’s size (kmax) is set to 7 in the experiments, as a compromise between the213

efficiency and performance. The lower bound is computed by solving an LBAP instance in214
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left to right are the U instance, B instance and A instance.
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Figure 5 Evolution of gap to optimality for different VNS methods.

polynomial time, as shown in [6]. In all cases, we observe that the number of obstacles has215

no significant effect on the the optimal makespan. If comparing different type of instances,216

it can be learned the optimal makespan is the largest for the B instance, and then the A217

instance has an intermediate level of makespan and the U instance has the smallest. This218

was expected as the distance between anchor points and destinations points differs among219

when simulating these instances. Concerning the performance of two VNS methods on these220

instances. For U instance, we get almost the same upper bound with the two methods, while221

newVNS works better for B instance and A instance, namely, we more often need to use non222

shortest paths to improve the solution for such instances.223

In Fig.5, we show the evolution of gap to optimality (in percentage) with repect to time.224

For U instance, we see that newVNS performs closely to oldVNS. As newVNS is oldVNS225

followed by a second stage search with an enlarged neighborhood, when oldVNS finishes, the226

follwed search doesn’t continue to improve the bound much. For B instance, oldVNS is less227

efficient, and sometimes the time limit (60s) is reached, as we can clearly observe the curve228

of oldVNS for B instance staying constant after a little descent, which exactly overlaps the229

first stage of newVNS. We see that the bound is improved again when non-shortest paths230

are considered. This conclusion holds for the A instance, namely that newVNS has a clear231

advantage over oldVNS.232

For each instance, we compute an upper bound by newVNS, and then resolve the CP233

problem to optimality respectively with the two methods. In Fig.6, we compare the time234

spent on the CP solving process by each method. There are a total of 360 instances to235
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point (x, y) corresponds to an instance which is solved in x seconds by the global constraint and y

seconds by the a posteriori approach. When an instance is not solved by the global constraint (resp.
the a posteriori approach), it is displayed on x = 3600 (resp. y = 3600).

solve and 30 instances for each scenario(o = 5, 10, 15, 20) and for each instance type. For236

U instance, When t < 2s, the a posteriori approach solves more instances than the global237

constraint. After 2s, the global constraint becomes more efficient. Under a time limit of 3600s,238

there are 112 instances solved by global constraint, and 113 instances by the a posteriori239

approach. For B instance, all the instances are solved within 3600s, however, the a posteriori240

approach performs more efficiently. As for A instance, the a posteriori approach can solve all241

the instances, while the global constraint solves 106 instances. We can come up with the242

conclusion that the a posteriori approach performs better than the global constraint.243

5 Conclusion244

In this work, we extended previous work on non-crossing MAPF by considering the impact245

of robots’s size. Our findings show that a new definition of makespan should be introduced246

to cope with the real-world constraints. In these new settings, we follow the principe of247

combining the VNS method with CP model to resolve the problem to optimality on randomly248

generated instances. We introduced an improved VNS method that considers non-shortest249

paths as neighbors, which performs better than the basic VNS method for some type of250

instances. We proposed to sequentially combine them to improve the robustness in practice.251

We also provided two ways to solve the CP model optimally, and the result shows that252

the a posteriori approach generally outperforms the global constraint, while the latter may253

lead to a fast solution for some instances. For the future work, we envisage to exploit the254

strength of the two approaches and implement them as in parallel. In this problem, one255

of the main issues affecting the resolution effciency is related to the upper bound found to256

generate the CP model. The larger the upper bound, the greater the number of candidate257

paths and the heavier the CP model, which requires more time to solve optimally. To avoid258

this unnecessary computation, we plan to adopt a dichotomous method to implement the259

resolution procedure.260
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