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Abstract11

Software masking, a software mitigation against power-side channel attacks, aims at removing the12

secret dependencies from the power traces that may leak cryptographic keys. However, high-level13

software mitigations often depend on general purpose compilers, which do not preserve non-functional14

properties. What is more, microarchitectural features, such as the memory bus and register reuse,15

may also reveal secret information. These abstractions are not visible at the high-level implementation16

of the program. Instead, they are decided at compile time. To remedy these problems, security17

engineers often turn off compiler optimization and/or perform local, post-compilation transformations.18

However, theses solution lead to inefficient code.19

To deal with this issues, we propose Secure by Construction Code Generation (SecConCG), a20

secure constraint-based compiler backend to generate code that is secure. SecConCG can control the21

quality of the mitigated program by efficiently searching the best possible low-level implementation22

according to a processor cost model. In our experiments with ten masked implementations on23

MIPS and ARM Cortex M0, SecConCG improves the generated code from 10% to 10x compared to24

non-optimized secure code at a small overhead of up to 7% compared to non-secure optimized code.25
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1 Introduction32

Cryptographic algorithms such as AES and RSA use mathematical properties to hide secret33

information such as encryption or decryption keys, which an unauthorized user should not34

obtain. However, the software implementation of these high-level algorithms may reveal35

information about their secret keys [7]. In particular, the attacker may observe side-channel36

information, such as the power consumption [7], during the execution of the algorithm to37

extract the secret keys. Many of these attacks do not require expensive equipment and38

provide an attractive way to attack exposed devices.39

Software mitigations, such as constant-time programming and software masking, aim at40

protecting against these side-channel attacks. In particular, software masking hides secret41

information randomizing the secret values. While software masking can be an effective42

mitigation, it can be invalidated by compiler code generation [1, 12]. For example, consider43

Figure 1, a first-order masked C implementation of exclusive OR, where key is a secret value,44
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1 u32 Xor(u32 pub , u32 mask , u32 key) {
2 u32 mk = mask ^ key;
3 u32 t = pub ^ mk;
4 return t;
5 }

Figure 1 Masked exclusive OR implementation in C

mask is a uniformly random variable, and pub is a secret-independent value. At line 2, the45

algorithm creates the second share, mk, and at line 3, it performs the exclusive OR operation46

with the public value, pub. At a high-level, the code of Figure 1 is secure, but a binary47

implementation generated by a standard, security-unaware compiler may leak information48

about the secret key at the hardware level. For example, the random share mk may reuse49

the register of the mask variable, which results in a value transition of the reused register50

from mask to mk. This transition may be observable in the power trace of a device, leaking51

information about the secret key. What is more, memory operations that use the same bus52

may also reveal secret information [10].53

To mitigate these compiler-introduced side-channel leaks at the binary level there are54

techniques based on compilation [12], and binary rewriting with hardware emulation [10]. The55

compiler-based methods need to be embedded in the compiler infrastructure [12]. Methods56

that depend on hardware emulation are typically accurate but have high overhead [10].57

All these approaches generate programs with increased performance overhead [12, 10]. In58

particular, Rosita [10], a emulation-based approach, introduces an overhead of 24% to 64%59

on their mitigation. Wang et. al [12] perform their mitigation with no compiler optimizations60

(-O0) in LLVM to preserve the high-level properties of the mitigation. However, unoptimized61

code is highly inefficient. Moreover, unoptimized code may introduce additional leaks due to62

the heavy use of the program stack.63

To summarize, current approaches to secure compilation against power side-channel64

attacks generate code that is either secure (does not leak secrets due to transitional effects)65

or efficient, but rarely both. To fill this gap, we propose SecConCG, a compiler approach66

that generates optimized code that preserves security properties. SecConCG can control67

the quality of the mitigated program by efficiently searching the best possible low-level68

implementation according to a processor cost model [3]. The mitigations are based on69

instruction scheduling and register allocation transformations. SecConCG is hardware70

agnostic but can be extended with additional architecture-specific constraints. In our71

experiments with ten masked implementations on MIPS and ARM Cortex M0, SecConCG72

improves the generated code from 10% to 10x compared to non-optimized secure code at73

a small overhead of up to 7% compared to non-secure optimized code. To conclude, this74

paper contributes a compiler method to generate leak-free, low-overhead assembly code for75

high-level software-masked programs.76

2 Background77

This section describes the background for our paper, including the Hamming Distance (HD)78

model (Section 2.1) and a constraint-based compiler backend model (Section 2.2).79
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2.1 Hamming-Distance Model80

The Hamming Weight (HW) model [7] corresponds to the number of active bits in a data81

word. We assume the following encoding of the binary data, d =
∑N−1

i=0 2idi, where di is one82

if the ith bit of an N-bit word is set and 0, otherwise. The HW of this data is the number83

of the bits that are set, i.e. HW (d) =
∑N−1

i=0 di. Without the need of detailed knowledge84

about the actual microelectronic design of a device, the HD leakage model assumes that the85

observed leakage when flipping the bits of a memory element from a value d1 to a value86

d2 is equal to HW (d1 ⊕ d2), where ⊕ denotes the exclusive OR operation. If one of the87

values, d1 is a uniform random variable, then d1 ⊕ d2 is also a uniform random variable88

and HW (d1 ⊕ d2) has the same mean and variance as HW (d1) [2]. This means that by89

masking (exclusive bitwise OR) a secret value k with a uniform random variable m, the90

hamming distance of the new variable, will have the same mean and variance as m. In this91

way masking hides the information of k from the power consumption traces.92

2.2 Constraint-based Compiler Backend93

A compiler backend implements low-level optimizations, namely instruction selection, in-94

struction scheduling, and register allocation to optimize low-level code. A combinatorial95

compiler backend [3, 6] uses a combinatorial solving technique to optimize software using the96

aforementioned backend optimizations.97

A constraint-based compiler backend generates a constraint model that corresponds to the98

program semantics, the low-level compiler transformations, and the hardware architecture.99

In particular, the compiler backend can be modeled as a Constraint Optimization Problem100

(COP), P = ⟨V, U, C, O⟩, where V is the set of the decision variables of the problem, U is101

the domain of each of these variables, C the set of constraints among the decision variables,102

and O is the optimization function. A combinatorial compiler backend aims at generating103

code that optimizes function O, which typically models the execution time or the code size104

of the analyzed code.105

The constraint model represents the code semantics, the hardware constraints, and106

a number of standard program transformations. In the following, we focus on two low-107

level transformations, register allocation and instruction scheduling that are crucial for our108

mitigation. Each program consists of a set of code blocks B, each of which contains a number109

of optional operations, o ∈ Operations, that may be active or not. A code block b ∈ B110

correspond often to a basic block, a piece of code with no branches apart from the entry111

and the exit of the block. However, a preprocessing step may split straight-line code into112

segments to improve the scalability by decomposing the problem. The machine-instruction113

set Inso, o ∈ Operations, is the set of hardware instructions that implement operation o.114

Each operation may consist of a number of operands p ∈ Operands, each of which may be115

implemented by different, equal-valued temporaries, t ∈ Temps.116

The decision variables of the constraint problem are the following: r(t) ∈ Regst, t ∈117

Temps is the hardware register assigned to temporary t; a(o) ∈ [0, 1], o ∈ Operations denotes118

whether operation o is active or not; i(o) ∈ Inso, o ∈ Operations is the instruction that119

implements operation o; c(o) ∈ [0, maxc], o ∈ Operations is the cycle at which an operation120

o is scheduled, bounded by maxc; y(p) ∈ Tempsp, p ∈ Operands is the selected temporary121

among all possible temporaries for operand p. In addition to these, l(t) ∈ [0, 1], t ∈ Temps122

represents whether a temporary is live or not, ls(t) ∈ [0, maxc], t ∈ Temps represents the123

cycle at which t becomes live, and le(t) ∈ [0, maxc], t ∈ Temps represents the last cycle at124

which t is live, with ls(t) < le(t), t ∈ Temps. An important property of register allocation125

CP 2022
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is that the register live ranges of a specific hardware register ri do not overlap. This means126

that ∀t1, t2 ∈ Temps . r(t1) = r(t2) = ri, we have ls(t1) ≥ le(t2) or ls(t2) ≥ le(t1).127

A typical objective function of a combinatorial compiler backend aims at optimizing128

different metrics, including minimizing the code size and minimizing the execution time. The129

following equation is a generic objective function that sums up the weighted cost of each130

code block
∑

b∈B weight(b) · cost(b). This weighted cost for each code block consists of the131

cost of the specific implementation and is a variable, whereas, weight is a static value that132

represents the contribution of the specific code block to the total cost.133

3 SecConCG134

Compiler code generation may generate code that is vulnerable to power side-channel attacks.135

To remedy this problem, we propose SecConCG, an approach to optimize code that does not136

expose secret information. SecConCG is a constraint-based secure optimizing compiler, i.e.137

it extends a constraint-based compiler backend with security constraints. It takes as inputs138

1) a program in a low-level representation and 2) the security policy that describes which139

variables are Secret, Random, and Public.140

3.1 Security Analysis141

SecConCG performs a security analysis to extract the security types of each program variable142

and subsequently, generates constraints that lead the code generation to secure solutions. The143

security analysis identifies the security type, Random, Public, or Secret of each intermediate144

variables. In the compiler constraint model, the program variables are the operands and the145

result of each operation, i.e. the temporary variables t ∈ Temps (see Section 2.2).146

The security analysis uses a type-inference algorithm based on Wang et. al [12]. This147

algorithm assigns types to each temporary variables in a conservative way. Function type(t) :148

Temps → {R, S, P} returns the type that the type-inference algorithm assigns to temporary149

variable t. Here, and in the following of this section, we write the types as follows: type R150

corresponds to Random, S corresponds to Secret, and P corresponds to Public.151

Given the type inference, the security analysis generates information that the solver uses152

to generate secure programs. According to the HD model, when the value of a hardware153

register changes from one value to another, the exclusive OR of the two values is exposed.154

Rpairs is the set of pairs of temporary variables that when xor:ed together reveal secret155

information. This means that:156

Rpairs = [(t1, t2) | t1 ∈ Temps ∧ t2 ∈ Temps ∧ (type(t1) ∈ {R, P}) ∧157

(type(t2) ∈ {R, P}) ∧ (type(t1 ⊕ t2) = S)]. (1)158
159

If the type of a temporary variable, t, is Secret, then another random variable should160

precede the definition of the secret variable to hide the secret information. Spairs is a set of161

pairs, each of which consists of a secret temporary variable and a set of random temporary162

variables that are able to hide the secret information, i.e. type(t′ ⊕ t) = R:163

Spairs = [(t, ts) | t ∈ Temps ∧ type(t) = S ∧ ts = [t′ | t′ ∈ Temps ∧ type(t′) = R ∧164

type(t′ ⊕ t) = R]]. (2)165166

Finally, memory operations may also reveal secret information. We assume the same HD167

model for the memory bus as for the register-reuse transitional effects. This means that the168

leakage corresponds to the exclusive OR of two subsequent memory operations. Mmpairs169
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are the memory to memory leakages, i.e. if the sequence of two instructions in memory leads170

to a secret leakage.171

Mmpairs = [(o1, o2) | o1 ∈ MemOperations ∧ o2 ∈ MemOperations ∧172

type(tm[o1]) = R ∧ type(tm[o1]) ∈ {R, P} ∧ type(tm[o1] ⊕ tm[o2] = S)].173174

Here, tm[o] ∈ Temps is the temporary that corresponds to the memory data of the operation.175

The same leakage as we had in the case of a secret register write applies here. This176

means that if a memory operation stores/loads a secret value to/from the memory, a random177

memory operation that is able to hide the secret information should precede this operation.178

Mspairs is a set of pairs, each of which consists of the memory operation that accesses secret179

data, o, and a set of memory operations that access random data and are able to hide the180

secret information, i.e. type(tm[o′] ⊕ tm[o]) = R. The definition of Mspairs is as follows:181

Mspairs = [(o, os) | o ∈ MemOperations ∧ type(tm[o]) = S ∧182

os = [o′ | o′ ∈ MemOperations ∧ type(tm[o′]) = R ∧183

type(tm[o′] ⊕ tm[o]) = R]].184
185

The security analysis provides Rpairs, Spairs, Mmpairs, and Mspairs to the constraint186

model, which enables the implementation of constraints that constrain the code generation187

to generate secure programs.188

3.2 Constraint Model189

The constraint model, consisting of the combinatorial compiler, takes as input the four sets,190

Rpairs, Spairs, Mmpairs, and Mspairs and uses them as data to generate appropriate191

constraints, which we will define in the following.192

Predicate samereg returns true if the two input temporaries are active (l(t) = 1) and193

they are assigned to the same register. Otherwise samereg returns false.194

pred samereg (t1 ,t2 ): l(t1) ∧ l(t2) ∧ (r(t1) = r(t2 ))
195

The following constraint ensures that a pair of random (or public) temporaries in Rpairs,196

are either not assigned to the same register or they are not subsequent (subseq constraint).197

We will define the subseq constraint in the following.198

forall (t1 ,t2) in Rpairs:
samereg (t1 , t2) =⇒ (¬subseq (t1 ,t2) ∧ ¬subseq (t2 ,t1 ))

199

The following constraint ensures that for each pair (ts, trs) ∈ Spairs, one of the random200

temporaries, tr ∈ trs, precedes the secret temporary, ts, and another random temporary201

succeeds the secret temporary, if the ts is live.202

forall (ts ,trs) in Spairs:
exists tr in trs: l(ts) =⇒ (l(tr ) ∧ subseq (tr ,ts )) ∧
exists tr in trs: l(ts) =⇒ (l(tr ) ∧ subseq (ts ,tr ))

203

The following constraint ensures that a pair of non-secret memory operations in Mmpairs,204

are either not active or not subsequent memory operations (msubseq constraint). Constraint205

msubseq is similar to subseq but considers two consecutive memory operations instead of206

temporaries. We will define the msubseq constraint in the following.207

CP 2022
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forall (o1 ,o2) in Mmpairs:
a(o1) ∧ a(o2) =⇒ (¬msubseq (o1 ,o2) ∧ ¬msubseq (o2 ,o1 ))

208

Finally, the following constraint ensures that for each pair (os, ors) ∈ Mspairs a random209

memory operation, or ∈ ors precedes the secret-dependent memory operation, os.210

forall (os ,ors) in Mspairs:
exists or in ors: a(os) =⇒ (a(or ) ∧ msubseq (or ,os )) ∧
exists or in ors: a(os) =⇒ (a(or ) ∧ msubseq (or ,os ))

211

This constraint works similarly as the register equivalent, where instead of register212

operations, we have memory operations.213

To define the subseq constraint, we first define a set of help problem variables, lk, and214

the help predicate is_before. First, predicate is_before(t1, t2) is true if t1 is assigned215

to the same register as t2 and t1’s life range ends, le(t1), before the beginning of the life216

range of t2, ls(t2).217

pred is_before (t1 ,t2 ): same_reg (t2 , t1) ∧ (le(t2) ≤ ls(t1 ))
218

The following code snippet defines a new set of variables lk. Variable lk(t) contains219

the end live cycle of the temporary that occupied the same register at t, r(t), right before220

t was assigned. Namely, if t′ = lk(t), then the values of t and t′ result in a transitional221

effect that may reveal information to the attacker.222

forall t in Temps: lk(t) = max ([ ite( is_before (t′ ,t),le(t′ ),-1)
| forall t′ in Temps ])

223

Then, the definition of the subseq predicate is as follows:224

pred subseq (t1 ,t2 ): samereg (t1 ,t2) ∧ (lk(t2) = le(t1 ))
225

Similar to the subseq constraint, msubseq requires the definition of assisting problem226

variables, ok, and predicate is_before_mem. Predicate is_before_mem(o1, o2) is true,227

when o1 is scheduled before o2.228

pred is_before_mem (o1 ,o2 ): a(o1) ∧ (c(o1) ≤ c(o2 ))
229

Variable ok(o) is the issue cycle of memory operation o′ ∈ MemOperations that was230

issued before o.231

forall o in MemOperations : ok(o) = max(
[ite( is_before_mem (o′ , o), c(o′), -1) | forall o′ in MemOperations ])

232

Similar to predicate subseq, predicate msubseq is as follows:233

pred msubseq (o1 ,o2 ): a(o1) ∧ a(o2) ∧ ok(o2) = c(o1)
234

4 Evaluation235

This section describes the evaluation of SecConCG. For the evaluation of SecConCG, we236

pose the following research questions: RQ1: What is the overhead in execution time for237
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the generated code using SecConCG? RQ2: What is the speedup in execution time of the238

generated code compared with other techniques that use non-optimized code? RQ3: What239

is the solver overhead in solving time using SecConCG compared to the original constraint240

model?241

Experimental Setup: This section describes the implementation details of SecConCG242

and the evaluation setup. The implementation of SecConCG is an extension of Unison [3], a243

combinatorial compiler backend that uses Constraint Programming (CP) to optimize software244

functions with regards to code size and execution time. The type-inference implementation245

is written in Haskell and is merely based on Wang et. al [12]. All experiments run on an246

Intel®Core™i9-9920X processor at 3.50GHz with 64GB of RAM running Debian GNU/Linux247

10 (buster). We use LLVM-3.8 as the frontend compiler for these experiments. We evaluate248

our method on two architectures, 1) ARM Cortex M0, a highly predictable architecture249

targeting small embedded devices, and 2) Mips, a widely used embedded architecture. We250

implemented the constraint model both as part of the specialized Gecode1 constraint model251

and the Minizinc [8] model that Unison provides. The latter allows for solving the problem252

using multiple solvers. In total, we tried four solvers, Chuffed v0.10.3 [4], OR-Tools2,253

Elsie Geas3, and the specialized model written in Gecode v6.2. We ran the former three254

solvers activating the free-search option. Among all these solvers, Gecode and Chuffed were255

performing best. None of the two solvers was able to solve all the problems, but together,256

they could solve all the problems. To evaluate our approach, we use a set of small benchmark257

programs, up to 100 lines of C code, which were made available by Wang et. al [12]. Table 1258

provides a description of these benchmarks, including the number of lines of code (LoC) and259

the results of the evaluation. These benchmark programs constitute masked implementations260

from previous work and are linearized.261

Progr. Description LoC ARM Cortex M0 Mips32
PO SU SO PO SU SO

P0 Listing 1 5 0% 1.69 0.67 0% 7.33 1.38
P1 AES Shift Rows [1] 11 0% 1.83 0.87 0% 10.00 1.93
P2 Messerges Boolean [1] 12 0% 1.70 2.42 0% 6.86 3.65
P3 Goubin Boolean [1] 12 0% 1.66 2.54 0% 6.11 4.41
P4 SecMultOpt_wires_1 [9] 25 0% 1.59 0.42 0% 1.83 7.34
P5 SecMult_wires_1 [9] 25 0% 1.57 0.14 0% 1.75 7.53
P6 SecMultLinear_wires_1 [9] 32 0% 1.65 2.58 0% 2.55 8.59
P7 CPRR13-lut_wires_1 [5] 81 7% 1.10 0.03 0% 2.44 16.23
P8 CPRR13-OptLUT_wires_1 [5] 84 5% 1.08 0.03 0% 2.49 28.06
P9 CPRR13-1_wires_1 [5] 104 6% 1.11 0.08 ≈0% 2.10 25.35

Table 1 Optimality overhead (PO) over the optimal solution (by Unison), the speedup (SU)
compared to a secure non-optimized solution (by FSE19), and the solver overhead (SO) compared
to the Unison model

RQ1: Optimality Overhead: SecConCG builds on a combinatorial compiler backend262

to generate a program that satisfies security constraints for software masking. This means263

that our approach may compromise some of the code optimality of the non-mitigated code to264

mitigate the software masking leaks. To evaluate the overhead of our method compared to265

non-secure optimization, we compare the execution time of the optimized solution (optimal266

or suboptimal solution) that Unison [3] generates compared with SecConCG’s optimized267

1 Gecode: https://www.gecode.org
2 OR-Tools: https://developers.google.com/optimization/
3 Elsie Geas: https://bitbucket.org/gkgange/geas/src/master/

CP 2022
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and secure code. We calculate the overhead as follows: PO = 100 · (CyclesSecConCG −268

CyclesUnison)/CyclesUnison. Table 1 shows the results of our evaluation. For each of the269

benchmark programs, the table shows the overhead for ARM Cortex M0 and Mips. The270

results show zero overhead for Mips, and a maximum 7% overhead in ARM Cortex M0.271

More specifically, ARM Cortex M0 has an non-zero overhead for programs P7-P9. The272

observed overhead in ARM Cortex M0 depends partially on the mitigation itself that may273

require redundant or non-optimal operations. However, the main reason for the overhead274

that appears in larger benchmarks is that the constraint model becomes larger compared to275

the original model due to the introduction of additional constraints and problem variables.276

This leads to an increase in the search space and hinders the constraint model to locate277

feasible solutions.278

RQ2: Execution-time Improvement: To evaluate the execution-time improvement279

of our approach against other approaches, we compare SecConCG with the work by Wang280

et. al[12]. Wang et. al perform their vulnerability identification approach on the non-281

optimized code from LLVM 3.6. This is a common approach by different security mitigations,282

because compilation passes might violate the security properties of a program. However,283

non-optimized code leads to high performance overhead. This evaluation, compares the284

execution time in number of cycles (based on the cost model that we use) of the mitigated285

code by Wang et. al [12] and SecConCG. Table 1 shows the results of the evaluation for286

ARM Cortex M0 and Mips. In Table 1 the calculation of the improvement is as follows:287

SU = CyclesSecConCG/CyclesBaseline For ARM Cortex M0, the improvement ranges from288

8% for P8 to 83% for P1. We notice that for the smaller benchmarks, SecConCG achieves289

increased improvement over the baseline, whereas, for the largest benchmarks P7-P9, the290

improvement is smaller. The main reason for this, is the increased size of the program291

under analysis that consists of one large function that is difficult to decompose. As a future292

work, we plan to investigate opportunities for improved block decomposition. For Mips, the293

improvement ranges from 75% to 10x. The improvement is larger for smaller benchmarks294

due to the large overhead of load and store instructions that are present in the absence of295

optimizations in the baseline. In contrast to the non-optimized code, the code generated296

by SecConCG does not require memory spilling. This experiment shows a clear difference297

between the two architectures with regards to the improvement over the baseline, with298

SecConCG achieving a larger improvement for Mips than for ARM Cortex M0. The main299

reason for this difference is the characteristics of each architecture. ARM Cortex M0 has300

twelve general purpose registers, whereas Mips has 32 general purpose registers.. This allows301

the constraint model to select among multiple registers to assign to a temporary, avoiding302

non-secure register reuse. In addition to that, ARM Cortex M0 implements the Thumb303

instruction set, which contains many instructions, where one of the operands shares the same304

register as the result. This increases the complexity of the constraint model further.305

RQ3: Solver Overhead: SecConCG builds on Unison to generate a program that306

satisfies security constraints for software masking. The introduction of the new constraints307

and variables to the model, may introduce a solving overhead. To evaluate the overhead308

of SecConCG, we compare the solving time of SecConCG with the solving time of Unison.309

We calculate the overhead as follows: SO = (stSecConCG − stUnison)/stUnison, where st is310

the solving time. Table 1 shows the results of our evaluation. For each of the benchmark311

programs, the table shows the overhead for ARM Cortex M0 and Mips. The results show an312

increase in the overhead for Mips, when the size of the program increases. The overhead313

ranges from 2.3x to 26x slowdown in the solver. This is due to the introduction of new314

variables (t2, t ∈ Temps) and logical constraints that do not propagate well, leading to a315
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solving overhead. On the other hand, the overhead in ARM Cortex M0 is fluctuating, ranging316

from 3% to 3.58x. The reason for this, is that ARM Cortex M0 is a constrained architecture,317

with few registers, which makes the optimization problem difficult to solve for Unison, leading318

to reaching internal time limits in the solver. Therefore, introducing additional constraints319

reduces the search space. In summary, in this experiment, we observe that the solving-time320

overhead depends on the architecture and lead to a 26x slowdown to 30% overhead.321

5 Related Work322

This section presents the related work with regards to binary-code hardening against side-323

channel attacks, combinatorial compiler backends, and optimized security compilation ap-324

proaches.325

Code Hardening Against Side-Channel Attacks: Software masking is a software326

approach to mitigate power side channels. However, a compiler that translates a program to327

machine code may introduce power leaks [12, 10]. Wang et. al [12] identify leaks in masked328

implementation using a type system and perform local register allocation and instruction329

selection transformations to mitigate these leaks in LLVM. They identify transitional effects330

due to register reuse. Their approach is efficient allowing the analysis of large linearized331

functions and the mitigations introduce small overhead. However, they depend on a non-332

optimized compilation in order to preserve the security properties of the high-level program333

leading in the code generation of non-optimized but secure code.334

Combinatorial Compiler Backend: Compiler backend optimizations, like instruction335

selection, instruction scheduling, and register allocation are known to be combinatorial336

problems. However, solving combinatorial problems is difficult and results in low scalability337

and may result in high solving time. Therefore, general-purpose compilers use heuristics338

that throughout the years have proved to improve the performance of programs in modern339

compilers. However, these heuristics do not provide any optimality guarantees. For critical340

code and code aimed for compiler-demanding architectures, combinatorial methods may be341

able to find an optimized version of the code that may lead to reduced power consumption342

and/or high performance benefits. Different works [3, 6] aim to optimize critical code at343

different levels, like locally [6] or at function level [3]. The optimization goals range from344

execution time, code size, or estimated energy consumption [3, 6]. The main drawback of345

these approaches is scalability. However, a recent work, Unison [3], allows the optimization346

of functions with almost 1000 instructions.347

Optimized Secure Compilation: A recent work [11] deals with the problem that348

modern compilers do not guarantee preservation of security properties and optimization349

passes may invalidate security mitigations at the software level. Vu et. al [11] are able to350

perform high-level optimizations, which is not in the scope of our approach. The work by Vu351

et. al deals with the same problem as our approach but in a different level of abstraction352

considering a weaker leakage model. We believe that the combination of our approach with353

their approach could lead into more efficient secure code.354

6 Conclusion355

This paper proposes a constraint model to be embedded in a combinatorial compiler backend356

that allows the automatic generation of optimized code that is secure against power side-357

channel attacks. We show that our approach achieves high code improvement against358

non-optimized approaches ranging from 8% to 10x for two embedded architectures, MIPS359
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and ARM Cortex M0. At the same time, our approach introduces a maximum overhead of360

7% from the optimal solution.361
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