
Exploiting Model Entropy to Make Branching1

Decisions in Constraint Programming2

Auguste Burlats3

Polytechnique Montréal, Canada4

Gilles Pesant5

Polytechnique Montréal, Canada6

Abstract7

Branching decisions have a strong impact on performance in Constraint Programming (CP). Therefore8

robust generic variable ordering heuristics are an important area of research in the CP community.9

By allowing us to compute marginal probability distributions over the domain of each variable in10

the model, CP-based Belief Propagation also allows us to compute the entropy of each variable.11

We present two new branching heuristics exploiting entropy: one chooses the variable with the12

smallest entropy; the other is inspired by impact-based search and chooses the variable whose fixing13

is believed to have the strongest impact on the entropy of the model. We also propose a dynamic14

stopping criterion for iterated belief propagation based on variations in model entropy. We test our15

heuristics on various constraint satisfaction problems from XCSP benchmarks.16

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro17

Keywords and phrases Constraint Programming, Variable Ordering heuristic, Belief Propagation,18

Entropy19

Digital Object Identifier 10.4230/LIPIcs...20

1 Introduction21

Constraint Programming (CP) shows good performance to solve combinatorial problems.22

Indeed it strongly reduces the search space by using constraints and their powerful inference23

algorithms to filter out infeasible variable-value combinations at each node of the search24

tree. But the order in which variables are fixed also has a significant impact on the search25

space. This is why finding robust and generic variable ordering heuristics is crucial. The26

smallest-domain (dom) variable-ordering heuristic is the classic example of a generic heuristic27

showing good results [4]. Some heuristics observe the consequence of an assignment and make28

branching decisions based on those observations. dom/wdeg [2] observes which constraints29

cause failures. It improves dom by adding a weight to favor variables in the scope of those30

constraints. Impact-Based Search [10] fixes the variable that is susceptible to lead to the31

largest reduction of the search space. Activity-Based Search [6] first assigns the variables32

whose domain is the most frequently reduced by other assignments. Conflict-History-Based33

Search [3] favors variables that are the most often involved in recents failures. crbs-max34

[12] observes the correlations between variables, i.e. the possibility of conflict between those35

variables, and fixes the variable that presents the strongest correlation with another variable.36

MaxSD [9] computes for every possible assignment its solution density in each constraint, i.e.37

the proportion of valid local solutions in which it appears, and branches on the assignment38

of maximum solution density. Finally, Belief Propagation makes possible the computation of39

an estimation of a global solution density for each assignment by computing the marginal40

distribution over the variables’ domains [8]. Max-marginal branches on the assignment with41

the largest marginal. But computing marginal probability distributions also allows us to42

compute the entropy of each variable. In this paper we present two new variable ordering43

heuristics that exploit this entropy. We also show that it is possible to determine when BP44

© Auguste Burlats and Gilles Pesant;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Exploiting Model Entropy to Make Branching Decisions in Constraint Programming

should stop by observing the variation of a model’s entropy.45

2 Preliminaries46

2.1 Constraint Satisfaction Problem47

A Constraint Satisfaction Problem (CSP) is a problem defined by a triplet < X, D, C >48

where :49

X = {x1, x2, . . . , xn} is a finite set of variables.50

D = {D(x1), D(x2), . . . , D(xn)} is a finite set of finite domains.51

C = {c1, c2, . . . , cm} is a finite set of constraints.52

The goal is to find for each variable xi ∈ X, an assignment from D(xi) that doesn’t break53

any constraint from C.54

2.2 Belief Propagation for CSPs55

Belief Propagation (BP) is an algorithm introduced by Pearl [7]. It is able to compute the56

marginal distribution for each non-observed node in a Markov Random Field, conditioned by57

the value of the observed nodes.58

Pesant [8] introduced a framework combining CP and BP. A CSP can be viewed as a59

factor graph where the constraints are the factor nodes and the variables are the variable60

nodes. We note µc→x the message from constraint c to variable x, and µx→x the message61

from variable x to constraint c. Their definition is :62 {
µx→c(v) =

∏
c′∈N(x)\{c} µc′→x(v)

µc→x(v) =
∑

v:v[x]=v fc(v)
∏

x′∈N(c)\{x} µx′→c(v[x′])63

where N(x) is the neighbourhood of variable x, i.e. the constraints applied to this variable,64

N(c) is the neighbourhood of constraint c, i.e. its scope, v is a tuple from the Cartesian65

product all the variables in the scope of c, v[x] is the value taken by x in v and fc(v) is a66

function that returns 1 if tuple v satisfies c and 0 otherwise. We are thus able to compute67

the marginal of a variable x :68

θx(v) =
∏

c∈N(x)

µc→x(v) ∀v ∈ D(x)69

Messages are sent iteratively. First, all variables send their messages. Then it is for all70

constraints to send their messages. This cycle is repeated for a fixed number of iterations.71

This paper offers a solution to make this number dynamically decided at each node of the72

search tree. Computing
∑

v:v[x]=v fc(v) is equivalent to counting solutions (locals to c) where73

v[x] = v. Therefore computing messages from constraints is similar to performing weighted74

counting. Pesant [8] provided efficient dedicated algorithms for weighted counting on several75

constraints.76

Let’s examine a small example from [8] to illustrate the behavior of marginals :77

▶ Example 1. Consider variables a, b, c and d with D(a) = D(b) = D(c) = D(d) = {1, 2, 3, 4},78

and the following constraints :79

(1) alldifferent(a, b, c)80

(2) a + b + c + d = 781

(3) c ≤ d82

A. Burlats and G. Pesant XX:3

1 2 3 4
θa 0 .50 .50 0
θb 0 .50 .50 0
θc 1 0 0 0

S θd 1 0 0 0

1 2 3 4
θa .25 .25 .25 .25
θb .25 .25 .25 .25
θc .25 .25 .25 .25
θd .25 .25 .25 .25

1 2 3 4
θa .50 .30 .15 .05
θb .50 .30 .15 .05
θc .62 .28 .09 .01
θd .29 .34 .26 .11

1 2 3 4
θa .01 .52 .46 .01
θb .01 .52 .46 .01
θc .98 .02 .00 .00
θd .90 .10 .00 .00

Table 1 True marginals (top left), initial marginals (top right), marginals after 1st iteration of
BP (bottom left) and after 10th iteration (bottom right) for Example 1

This CSP has two solutions : (a = 2, b = 3, c = 1, d = 1) and (a = 3, b = 2, c = 1, d = 1). If83

we examine variable a, we observe that assignment a = 2 is present in one solution and that84

assignment a = 3 is present in the other one. There is no valid solution containing a = 1 or a =85

4. Therefore its true marginal distribution is θa(1) = 0, θa(2) = 1/2, θa(3) = 1/2, θa(4) = 0.86

If we examine variable c, we can observe that only assignment c = 1 can be in a valid solution.87

Thus, its marginal distribution is θc(1) = 1, θc(2) = 0, θc(3) = 0, θc(4) = 0. BP starts from88

a uniform distribution for each variable: θxi(v) = 1/|D(xi)|, ∀v ∈ D(xi), ∀xi ∈ X. And, as89

we can see in Table 1, BP tends to converge to the true marginal distributions after a few90

iterations.91

BP is assured to converge when there is no cycle in the graph [7]. But the graphical92

representation of a CSP often contain such cycles. However, the large arity of global93

constraints allows us to encapsulate those cycles and perform efficient inference [8]. The94

Max-marginal [1] heuristic exploits those marginals by branching on the variable xi that95

maximizes maxv∈D(xi)(θxi
(v))), assigning it the value with the strongest marginal.96

3 Exploiting Entropy97

Because Belief Propagation allows us to compute marginal distributions for each domain, we98

are also able to compute the entropy of each variable. Entropy is a powerful estimation of the99

knowledge that we have on a variable. The lower its entropy, the stronger the information100

about which value the variable should take. Thus, entropy is a powerful tool that we can101

exploit to make better branching decisions.102

3.1 Min-Entropy103

We define the entropy H(x) of variable x using Shannon’s entropy [11] :104

H(x) = −
∑

v∈D(x)

θx(v)log(θx(v))

Branching heuristic Min-entropy selects the variable with the lowest entropy, and the105

value with the strongest marginal.106

Notice that, if the marginal distributions are uniform (i.e. we have no discriminating107

information between domain values), the variable with the lowest entropy would be the one108

CP2022

XX:4 Exploiting Model Entropy to Make Branching Decisions in Constraint Programming

with the smallest domain. Therefore, we can consider that min-marginal is a generalization109

of dom where we can discriminate between domain values based on the CSP.110

3.2 Using Entropy as a Dynamic Stopping Criterion for BP111

Variations of entropy gives us information about the variations of marginals. If the entropy of112

a variable undergoes important variations along BP iterations, the marginals of this variable113

are varying too. It means that we shouldn’t stop BP.114

Based on this idea, we designed a dynamic criterion to decide at each search-tree node115

when we should stop BP iterations. This criterion is based on the variations of the entropy116

of the model H. We compute the model’s entropy as the mean of variables’ entropies :117

H =
∑

x∈X
H(x)

log(|D(x)|)

|X|
Notice that the entropy of each variable is divided by the logarithm of the size of the118

domain. Thus we are assured that H ∈ [0, 1] regardless of the domains’ size. Otherwise,119

H would be very different at the beginning and at the end of the search. Therefore the120

threshold α that we will introduce could become less relevant as search progresses.121

After each iteration of BP, we compare the current entropy H to the entropy at the122

previous iteration H
′. If 0 ≤ H

′ −H ≤ α, BP iterations are stopped and a branching decision123

is taken. This difference must be positive: otherwise it means that the entropy is increasing124

and that we shouldn’t stop BP. The value of α can be fixed by the user. Experiments showed125

that α = 0.01 gives good results on a large spectrum of problems.126

3.3 Impact-entropy127

Impact-Based Search[10] (IBS) shows good results by basing its branching decisions on the128

expected impact of these decisions. But this heuristic only looks at impacts on the size of129

the search space, approximated by the size of the Cartesian product of the domains. When a130

variable is fixed, other variables’ entropy is also impacted. Therefore exploiting this impact131

could lead to good branching decisions.132

When a solution is found, H is null. We can thus consider that the objective is to133

minimize H. And that it is preferable to first fix variables that are the most susceptible to134

reduce this entropy.135

Each time a variable x is fixed to a value a, we measure the impact on H :136

I(x = a) = 1 − Hafter

Hbefore

where Hafter is the entropy after the assignment and Hbefore is the entropy before.137

The impact of an assignment is the mean of the observed impacts :

I(x = a) =
∑

k∈K Ik(x = a)
|K|

where K is the set of observed impacts for assignment x = a.138

To compute the impact of a variable, we compute the mean of the impact of each possible139

assignment for this variable :140

I(x) =
∑

v∈D′(x) I(x = v)
|D′(x)|

A. Burlats and G. Pesant XX:5

where D′(x) ⊂ D(x) is the set of values that are still possible assignments at the current141

node.142

According to the Fail-first Principle, Impact-entropy chooses the variable with the strongest143

impact. It chooses the value with the strongest marginal.144

4 Experimental Evaluation145

In this section, we evaluate the quality of our search strategies. In order to position our work146

in the state-of-the-art, we compare the performances of our heuristics with the dom/wdeg147

and IBS heuristics. Our metrics are the number of fails, which shows the quality of the148

heuristics, i.e. how good are the branching decisions, and the runtimes, which indicates if149

the extra cost induced by our heuristics still makes them viable.150

4.1 Experimental Protocol151

We ran our experiment on a set of 1033 instances of various problems from XCSP31. We track152

the performance of min-entropy and impact-entropy performing a Depth-First Search. For153

impact-entropy and IBS we use restarts, with a cutoff set at 100 failures. After each restart,154

the cutoff is multiplied by 1.5. For each branching strategy, we compare a configuration with155

a number of BP iterations fixed at 5 and a configuration where the number of iterations is156

dynamically selected by our stopping criterion with α = 0.01. The experiments are performed157

on a server with two Intel E5-2683 v4 Broadwell @ 2.1Ghz. We use the solver MiniCPBP158

2, which is implemented over MiniCP[5] and is able to perform Belief Propagation. Each159

experiment has a 20-minute timeout and up to 12GB of memory available.160

4.2 Results161

Figure 1 shows the proportion of instances solved within a number of failed search tree162

nodes by each configuration. Globally, min-entropy seems to be the best strategy : it163

shows best performances for LatinSquare, MagicSquare and Primes, very closely followed by164

max-marginal. And min-entropy clearly outperforms the other heuristics for MagicSquare. It165

shows that exploiting entropy is a promising approach for search strategies.166

Impact-entropy does not perform as well as expected, except for Nonogram. Moreover,167

as shown in Figure 2, the initialisation of impacts has an important computational cost.168

Therefore it is not an interesting strategy yet. Finding another estimation for the impact of169

a variable could improve performance. We can notice that, because our search strategies are170

better for MagicSquare, LatinSquare and MultiKnapsack, we are competitive in runtime with171

dom/wdeg and IBS despite the additional computational cost of the marginals. The dynamic172

stopping criterion for BP iterations often gives similar search guidance to the configuration173

with a fixed number of iterations. The exceptions are MagicSquare and Primes, where using174

the stopping criterion with min-entropy and max-marginal results in an increase of the175

number of failures. And it is also able to reduce the runtime, as we can observe it in the176

performances for Kakuro, MultiKnapsack and LatinSquare. Because of the bad performances177

on MagicSquare and Primes we cannot conclude that it is a reliable stopping criterion yet.178

But it shows a good potential for reducing the computational cost of BP.179

1 Availables at http://www.xcsp.org/instances/
2 Available at https://github.com/PesantGilles/MiniCPBP

CP2022

XX:6 Exploiting Model Entropy to Make Branching Decisions in Constraint Programming

Figure 1 % instances solved vs #fails for our heuristics against dom/wdeg

Figure 2 % instances solved vs runtimes (ms) for our heuristics against dom/wdeg

A. Burlats and G. Pesant XX:7

5 Conclusion180

We proposed two search strategies that exploit entropy. The first one, min-entropy, fixes the181

variables with the lowest entropy first. The second one, impact-entropy, fixes the variable that182

is supposed to induce the strongest reduction on the entropy of the model. We also propose183

a dynamic stopping criterion for Belief Propagation based on the variation of the model’s184

entropy. We compare our heuristics with max-marginal, dom/wdeg and Impact-Based Search.185

Results show that min-entropy is better to guide search than state-of-the-art dom/wdeg and186

IBS on the instances considered. Our stopping criterion shows good potential for reducing the187

overall cost of BP but still needs some refinement to be able to preserve good performances188

on all problems. Finally impact-entropy seems to be a less promising strategy.189

References190

1 Behrouz Babaki, Bilel Omrani, and Gilles Pesant. Combinatorial search in cp-based iter-191

ated belief propagation. In Helmut Simonis, editor, Principles and Practice of Constraint192

Programming, pages 21–36, Cham, 2020. Springer International Publishing.193

2 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting system-194

atic search by weighting constraints. pages 146–150, 01 2004.195

3 Djamal Habet and Cyril Terrioux. Conflict history based search for constraint satisfaction196

problem. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC197

’19, page 1117–1122, New York, NY, USA, 2019. Association for Computing Machinery.198

doi:10.1145/3297280.3297389.199

4 Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for con-200

straint satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980. URL: https://201

www.sciencedirect.com/science/article/pii/000437028090051X, doi:https://doi.org/202

10.1016/0004-3702(80)90051-X.203

5 L. Michel, P. Schaus, and P. Van Hentenryck. Minicp: a lightweight solver for constraint204

programming. Mathematical Programming Computation, 13(1):133–184, 2021. doi:10.1007/205

s12532-020-00190-7.206

6 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box contraint-207

programming solvers. volume abs/1105.6314, 05 2011. doi:10.1007/978-3-642-29828-8_15.208

7 Judea Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach, page209

129–138. Association for Computing Machinery, New York, NY, USA, 1 edition, 2022. URL:210

https://doi.org/10.1145/3501714.3501727.211

8 Gilles Pesant. From support propagation to belief propagation in constraint programming.212

volume 66, pages 123–150, 2019. doi:10.1613/jair.1.11487.213

9 Gilles Pesant, Claude-Guy Quimper, and Alessandro Zanarini. Counting-based search: Branch-214

ing heuristics for constraint satisfaction problems. Journal of Artificial Intelligence Research,215

43:173–210, 2012.216

10 Philippe Refalo. Impact-based search strategies for constraint programming. In Mark Wallace,217

editor, Principles and Practice of Constraint Programming – CP 2004, pages 557–571, Berlin,218

Heidelberg, 2004. Springer Berlin Heidelberg.219

11 Shannon. A mathematical theory of communication. The Bell System Technical Journal,220

27(3):379–423, July 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.221

12 Ruiwei Wang, Wei Xia, and Roland H. C. Yap. Correlation heuristics for constraint pro-222

gramming. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence223

(ICTAI), pages 1037–1041, 2017. doi:10.1109/ICTAI.2017.00159.224

CP2022

https://doi.org/10.1145/3297280.3297389
https://www.sciencedirect.com/science/article/pii/000437028090051X
https://www.sciencedirect.com/science/article/pii/000437028090051X
https://www.sciencedirect.com/science/article/pii/000437028090051X
https://doi.org/https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/https://doi.org/10.1016/0004-3702(80)90051-X
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1145/3501714.3501727
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ICTAI.2017.00159

	1 Introduction
	2 Preliminaries
	2.1 Constraint Satisfaction Problem
	2.2 Belief Propagation for CSPs

	3 Exploiting Entropy
	3.1 Min-Entropy
	3.2 Using Entropy as a Dynamic Stopping Criterion for BP
	3.3 Impact-entropy

	4 Experimental Evaluation
	4.1 Experimental Protocol
	4.2 Results

	5 Conclusion

