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—— Abstract

We introduce two log-linear-time dispersion propagators—(a) spread (variance, and indirectly
standard deviation) and (b) the Gini coefficient—capable of explaining their propagations, thus
allowing clause learning solvers to use the propagators. Propagators for (a) exist in the literature
but do not explain themselves, while propagators for (b) have not been previously studied.
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1 Introduction

In constrained optimisation problems involving multiple agents (stakeholders), we often want
to ensure that the solution is balanced and fair. That is, to maximise total utility subject to
an upper bound on the statistical dispersion (e.g., spread or the Gini coefficient) of the utility
given to different agents or minimise dispersion subject to some lower bounds on utility.
These needs arise in, for example, balancing tardiness in scheduling, unwanted shifts in
rostering, and desired resources in resource allocation, or minimising deviation from a baseline
in schedule repair. These problems are often quite challenging. To solve them efficiently,
we want to reason about dispersion effectively. Previous work has studied the case where
the mean is fixed, but this may not be possible for many problems, e.g., scheduling where
total utility depends on the final schedule. In this paper, we introduce two log-linear-time
dispersion propagators—(a) spread [5] (variance, and indirectly standard deviation) and (b)
the Gini coefficient—capable of explaining their propagations, thus allowing effective learning
solvers to be applied to the above problems. Propagators for (a) exist in the literature but do
not explain themselves, while propagators for (b) have not been previously studied. We avoid
introducing floating-point variables, which are usually not supported by learning solvers, by
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reasoning on integer versions or scaled versions. We show through experimental trials that
clause learning can substantially improve the solving of problems where we want to bound
dispersion and optimise total utility and vice versa.

The presented propagators filter the lower bound of their dispersion metrics. We only
consider filtering the lower bound because usually minimising dispersion or keeping dispersion
under some upper bound is of interest. We do not consider propagating the bounds of the X
variables being measured, either, since preliminary experimentation indicated this happens
very late in the search tree and cannot lead to significant speedups.

An often effective way to solve constrained optimisation problems is the constraint
programming (CP) solving technology [6]. In CP, each constraint ¢ € C has a propagator f.,
which uses specialised algorithms and logic to reduce the domains of the variables concerning
¢ when invoked, i.e., f.(D)(x) C D(x). Only guaranteed non-solutions are removed. CP can
be augmented with lazy clause generation (LCG), which combines the techniques of Boolean
satisfiability solving (SAT) and CP [4]. A popular LCG solver is Chuffed [1], which we will
use and extend in this paper.

Suppose we have an array X of n variables x1,...,x, with arithmetic mean p. The
(population) variance and the (population) Gini coefficient of X are defined, respectively, as
follows.
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We can introduce constraints spread(X, M, v, s) and Gini(X, M, g, s) for these, respectively.
Here, M is constrained to be the sum of X and s is the scaling selected (as to avoid floating-
point numbers). For spread, v is constrained to be v = |0% - s|, i.e., the variance of X,
scaled (by s), and rounded down. This means that, e.g., s = 1 sets v as a whole number
and s = 100 sets v as variance in percentage. Note when this is used as a lower bound it is
always correct. Similarly, for Gini, g is constrained to be g = | Gini(X) - s].

2 Formal and Experimental Results

We utilise real-value relaxations for finding lower bounds on spread and Gini. We prove that
finding such lower bounds is equivalent to minimising a convex (spread) or quasiconvex (Gini)
function, thus can resort to binary chop and arrive at log-linear-time filtering algorithms.
We further prove that the generated clauses are correct.

We run two numerical experiments using Chuffed [1] and MiniZinc 2.5.5 [3]. The first
one is a simple problem where only minimising dispersion is of concern. The second one
is job-shop scheduling problem where multiple agents (owners) submit jobs and compete
over the resources (based on [7]). For both dispersion constraints we use four configurations:
A decomposition formulation; a simple minimal propagator, which only propagates on
the dispersion once all variables X are fixed; and the proposed binary-chop lower-bound
propagators with two variations of clause learning, a trivial one and the proposed one. The
trivial learning simply uses all bounds of all the variables as explanation, while the proposed
one is more frugal.

The results indicate that the proposed spread propagator is the fastest and the best at
finding good solutions quickly and proving optimality. The proposed Gini propagator is
better at finding good solutions quickly than the other methods, but is slightly outdone by
the decomposition in terms of proving optimality.
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