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1 Introduction

Multivalued decision diagrams (MDDs) are a graphical tool for compactly storing the solution
space of discrete optimization problems. MDDs are particularly useful for generating strong
dual bounds [1–4], especially on optimization problems where linear relaxations perform
poorly. We further the work on decision diagram based branch-and-bound by introducing
a method, referred to as peel-and-bound, of reusing the graphs generated at each iteration
of the algorithm. In the full paper12, (1) we present the peel-and-bound algorithm, (2) we
identify and discuss heuristic decisions that can be used to adjust peel-and-bound, (3) we
show that peel-and-bound outperforms branch-and-bound on the sequence ordering problem
(SOP), and (4) we discuss how the algorithm can be applied to other problems.

2 Motivation

A relaxed decision diagram for a minimization problem P is a layered directed graph with a
root r, and a terminal t, such that each path from r to t encodes a potential solution to P.
Furthermore, all feasible solutions to P must be encoded in paths from r to t, and infeasible
solutions are allowed to be encoded in paths from r to t. Thus, the shortest path from r to
t is a lower bound for P. A maximum width w is chosen, and a relaxed decision diagram
is constructed such that no layer of the diagram has more nodes than w. Diagrams with
larger values of w contain fewer infeasible solutions, but take longer to generate. In a typical
branch-and-bound algorithm, the branching takes place by splitting on the domain of the
variables. In decision diagram based branch-and-bound, branching takes place on the nodes
themselves by selecting a set of nodes U , such that every path from r to t passes through at
least one node in U [5]. The set U becomes a queue of nodes to be processed, and a relaxed
decision diagram is generated for each node u in U , with u as the root. This process can
replace the linear relaxation typically used in branch-and-bound algorithms.

Observe that when a decision diagram M is split into a representative set U , all of
the solutions represented by the diagrams that result from processing the nodes in U , are
already represented as sub-graphs of M. Peel-and-bound is a method of reading those
sub-graphs to use a starting point, instead of generating a new decision diagram from scratch
at each iteration. Complete details can be found in the full paper, but Figures 1 and 2
demonstrate the idea visually. Figure 3 shows our results from comparing decision diagram
based branch-and-bound to peel-and-bound with several different values of w.

1 Rudich is the main student author, Cappart and Rousseau are advisors.
2 The full version of this paper was accepted at the main CP conference.
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Figure 1 Example of an induced sub-graph for a SOP instance (shown in blue), and the associated
relaxed decision diagram with the same root. The notation M(u) refers to a relaxed decision diagram
that has a root of u.
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Figure 2 An example of a peel operation. In (1), A is selected to induce the peel process and
removed from the the original diagram (M(r) from Figure 1). In (2) the arcs that connect A to the
original diagram are moved to copies of the nodes they originally ended at, and infeasible arcs are
filtered. In (3) and (4) the process is repeated until the diagrams are disconnected.

Figure 3 Performance Profiles: the optimality gap = upper_bound−lower_bound
upper_bound
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