
Symmetry Breaking and Knowledge Compilation
Andrea Balogh !

Confirm Centre for Smart Manufacturing
School of Computer Science & IT, University College Cork, Ireland

Barry O’Sullivan ! �

Confirm Centre for Smart Manufacturing and Insight SFI Research Centre for Data Analytics
School of Computer Science & IT, University College Cork, Ireland

Abstract
Constraint programming is a powerful method for solving combinatorial problems. Diagnosis,
planning, and product configuration, are example use cases. While reasoning about the solution
space of combinatorial problems is usually intractable, compilation methods are often used to pre-
compute a representation that can answer queries in time that is polynomial in the representation size.
Symmetry breaking constraints can be added to a combinatorial problem to eliminate symmetries,
in the expectation that this will speed-up search and reduce the number of solutions. Finding
compact representations is often the bottleneck of compilation methods. In this paper we investigate
if breaking symmetries always leads to a smaller compiled representation. We considered four
compilers and three highly symmetrical problems. A reduction is observed in all the problems for
the compilation size when we break symmetries, with top-down compilers obtaining more reduction.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming.;
Computing methodologies → Knowledge representation and reasoning.

Keywords and phrases Symmetry Breaking, Knowledge Compilation.

Acknowledgements This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant Numbers 16/RC/3918 and 12/RC/2289-P2.

1 Introduction

Constraint programming (CP) is a powerful method to solve combinatorial problems, but due
to a large search space, solving can be very time consuming. Diagnosis, planning, product
configuration are example use cases. These systems are often used in an online format
answering queries, such as "How many possible configurations exist for a product?" or "Is
this configuration valid?". Compilation methods were developed to deal with the complexity
of solving the problems offline and create a representation that is able to answer queries in
polynomial time [6].

Symmetry in CP is defined as a bijective function mapping solutions to solutions and
non-solutions to non-solutions [3]. Symmetry breaking (SB) is the addition of constraints
to eliminate symmetrical solutions. Compiled representations of CSPs represent the set
of solutions as a Directed Acyclic Graph (DAG) with properties that support polytime
queries and transformations. Our hypothesis was that when we eliminate symmetries, sub-
graphs that represent the difference between the two solutions get eliminated and thus paths
that represents the two symmetrical solutions get merged into one. Thus, if solutions are
represented as paths in a graph, will having fewer solutions to represent always lead to
a smaller graph? In other words, if we break symmetries in the CSP, will its compiled
representation always be smaller? If not, what is the relationship between these, and for
what classes of problems and symmetries does this occur? Removing symmetries often
reduces computational overhead while solving, is this the same for compilation? To answer
these questions we considered some simple CSPs, such as a clique of not-equal constraints,
N-queens and Balanced Incomplete Block Design (BIBD). We introduced symmetry breaking

mailto:a.balogh@cs.ucc.ie
mailto:b.osullivan@cs.ucc.ie


2 Symmetry Breaking and Knowledge Compilation

constraints to these models and compiled them using four different tools: PySDD, ZSDD,
D4 and MiniC2D.

To best of our knowledge no such study was conducted before. There has been some
research in the area of combining symmetry breaking and compilation, but with a different
focus, such as dynamic symmetry breaking during compilation [2] or changing the compiled
representation to deal with symmetry [11]. Dynamic symmetry breaking during compilation
has been explored in [2] by extending the languages FBDD and DDG to Sym-FBDD and Sym-
DDG respectively. Variable Shift SDDs [11] were introduced to exploit variable substitution
by merging subtrees which represent the same formula but with different literals. This is
obtained by modifying the vtree such that each node is assigned an ID and VS-SDD has an
offset of k associated to it. Vtree nodes expressing the same Boolean formulas are merged
and the offset is used to associate literals to this. The effect of symmetry breaking at CNF
level and at domain level with automated tools and manual formulation has been studied on
model counting [17].

The paper is structured as follows: Section 2 gives an overview of symmetry breaking in
CP. Section 3 introduces knowledge compilation, the four tools and the representations they
compile to. Finally, Section 4 describes the experiment setups and results of them.

2 Symmetry breaking in Constraint Programming

Symmetry breaking in CP has been widely recognized as having a large impact, but research
around it is still sparse compared to other aspects in CP. A good overview of the different
definitions and types of symmetry can be found in [3]. Generally, symmetry is defined as a
bijective function of the variable-value pairs, mapping solutions to solutions, non-solutions
to non-solutions. It can be inherent in the problem or introduced while modelling. A set of
symmetrical solutions belong a group. Breaking symmetries mean that through additional
constraints we eliminate solutions, such that at least one representative of the symmetry
group remains a solution.

Depending on the problem at hand, recognizing symmetry and formulating constraints
to break all symmetries can be challenging, and often domain knowledge is required. Some
tools have been implemented to deal with this at various levels. At CNF level saucy [4] or
nauty [10] can be used to recognize automorphisms in graphs. A graph is created such that
vertices represent SAT literals and edges possible combinations of these. Shatter [1] and
BreakID [7] were implemented using saucy to identify symmetries, then generate predicates
to eliminate them.

Savile Row [12] is a modelling assistant for CP which also has an option for symmetry
breaking. It takes as input a constraint model defined in a high-level language, ESSENCE’,
and transforms this to various CP and SAT models. It uses a graph automorphism solver to
detect symmetries and breaks them using the lex-leader method. Such tools create auxiliary
variables while breaking symmetries, thus for our setup using these tools is difficult. Our
hypothesis, that sub-graphs that are occurring multiple times due to symmetries would be
joined, is not possible in a model where we reformulate the problem with additional literals.
To this end, we hand model the symmetry breaking constraints.

Symmetry breaking is not always beneficial, for example local search performs better
when we do not break symmetries [16]. Also for some problems, with few symmetries, the
overhead of extra constrains might not be beneficial enough.



Balogh and O’Sullivan 3

3 Knowledge Compilation

Knowledge compilation covers techniques to deal with the computational complexity of pro-
positional reasoning, such that a propositional theory is compiled into a target representation,
one that has properties that allow the user to perform operations in polytime. The most
well known such representation is Ordered Binary Decision Diagram (OBDD). SAT models
are often compiled to OBDDs so that this representation can be queried instead of solving
the SAT model again.

There is a trend that more succinct representations are less tractable, thus selecting the
appropriate representation can have a huge impact. The Knowledge Compilation Map [6] was
created to define a structure that describes the relationship between some representations
to help make an informed decision. One should first define the queries and transformation
its application needs and then choose the most succinct representation that supports these.
Often generating the smallest representation is the bottleneck of compilation methods [6].

Negation Normal Form (NNF) is the base of the compilation map, a DAG that has as
leaves true, false, literal X or ¬X and internal nodes represent OR and AND operations.
NNF does not qualify as a target compilation language, but many of its subset do.

There are two ways to compile a knowledge base (KB) such as CNF formulas: bottom-up
and top-down compilation. Bottom-up compilation takes fragments of the KB, such as CNF
clauses, compiles these and uses the apply operation to join the representations together
efficiently. Top-down compilation takes the whole KB and recursively compiles fragments of
it using conditioning, such as the trace of DPLL using a SAT solver. Top-down compilers
work only on CNF inputs, whereas bottom-up compilers apply operation is able to deal
with other input types as well. Top-down compilation has been compared to bottom-up
compilation for OBDDs [8] and for SDDs [14], in both cases top-down compilation being
faster.

In the following, we consider the four compilers we used and the representations they
generate: PySDD1 ZSDD2, MiniC2D3 and D4.4

3.1 D4 : Decision-DNNF
D4 [9] is a top-down compiler with the target representation of Decision-DNNF. The
deterministic-DNNF(d-DNNF) is an extension of NNF with decomposability and determinism
properties. Decomposability is satisfied if for all conjunctions variables are not shared, that
is, children of AND-nodes do not share variables. Determinism is satisfied if children of
OR-nodes are pairwise contradictory. Decision-DNNF is a strict subset of d-DNNF, such
that each OR node is also a decision node. A decision node N on decision variable X has the
form (¬X ∧ Y )∨ (X ∧Z), meaning if X then Z else Y . The order of the variables is defined
by a dtree, defined later in Section 3.4

3.2 PySDD : Sentential Decision Diagram(SDD)
PySDD [5] is a Python wrapper for the open-source C SDD package that compiles CNF/DNF
to Sentential Decision Diagram (SDD). This is an extension of NNF with structured decom-

1 https://github.com/wannesm/PySDD
2 https://github.com/nsnmsak/zsdd/
3 http://reasoning.cs.ucla.edu/minic2d/
4 https://www.cril.univ-artois.fr/KC/d4.html

https://github.com/wannesm/PySDD
https://github. com/nsnmsak/zsdd/
http://reasoning.cs.ucla.edu/minic2d/
https://www.cril.univ-artois.fr/KC/d4.html


4 Symmetry Breaking and Knowledge Compilation

(a) compiled SDD without SB (b) compiled SDD with SB (c) vrtee used

Figure 1 SDD of the direct encoded CSP: v1 + v2 + v3 = v4 with domains {1, 3} for v1, v2, v3 and
{7, 9} for v4. We break the symmetry by adding v1 ≤ v2, v2 ≤ v3. Literal A denotes the assignment
v1 = 1, B denotes v1 = 3 etc.

posability and strong determinism. These properties make it a strict subset of d-DNNF and
a strict superset of OBDDs.

An SDD is a DAG (e.g. Figure 1a), where decision nodes (circles) represent (X,Y)-
decompositions, i.e. an OR operation on sentences. These correspond to the nodes in the
vtree associated to the SDD (e.g. Figure 1c). A vtree is a binary tree whose leafs correspond
to literals. The rectangles in the SDD are represent AND operation between primes (left
box) and subs (right box). The number of nodes is equal to the number of OR-nodes and
the size of the SDD is equal to the number of AND-nodes, 15 and 30 respectively in Figure
1a. Figure 1 contains the SDD without and with symmetry breaking of a sum constraint:
v1 + v2 + v3 = v4. Using the same vtree, we can observe which paths in the SDD get
eliminated when adding SB, that is, which symmetrical solutions are removed.

PySDD is a bottom-up compiler, compiling clauses to SDDs, then using the apply
operation to combine these as well as using vtree search along the way to find a vtree that
minimizes the size of the representation. The size of the SDDs are defined by the vtree that is
used to create them. Similarly to OBDDs, where the variable ordering defines the structure,
with SDDs vtrees do. OBDDs are canonical with respect to variable ordering, SDDs are with
respect to vtrees. Using a right linear vtree makes the SDD equivalent to an OBDD.

3.3 ZSDD : Zero Suppressed Sentential Decision Diagram

Zero Suppressed Sentential Decision diagrams (ZSDDs) are an extension to SDDs such that
while terminal symbols for SDDs are the literal X or ¬X, ZSDDs have terminals ε and ⊥,



Balogh and O’Sullivan 5

Figure 2 ZSDD representing the CSP from Figure 1 and the vtree used

where ε represents Boolean functions that returns 1 if all variables are 0 [13]. ZSDDs tend
to be a better choice for sparse problems, where the number of solutions is few and only a
few variables have values equal to 1 in these. Solution counting runs in time linear to size of
ZSDD. In ZSDD a decision node is removed if the corresponding function return true only
when all variables from either left or right subtrees are assigned 0. With this in mind, the
expectation is that when we break symmetries, decision nodes get removed. The ZSDD also
uses bottom-up compiler, and the representation can be used as a more compact alternative
to SDDs [13]. Figure 2 visualizes a ZSDD for the same CSP as Figure 1.

3.4 MiniC2D : Decision-SDD

MiniC2D uses a top-down approach to compile CNF to Decision-SDD [14]. A vtree node
whose left child is a leaf is called Shannon node, otherwise it is a decomposition node. An
SDD with any vtree can be a Desicion-SDD as long as each decomposition decision node
has the form {(p, s1), (¬p, s2)} where s1 = >, s1 = ⊥ or s1 = ¬s2. A special form of vtree
called dtree guarantees and SDD to be a Decision-SDD. A clause is compatible with a vtree
node if some of its literals are on the right and some on the left side of the node. A vtree for
a CNF is a dtree if every clause is compatible with only Shannon nodes. Thus, for every
clause we identify the lowest vtree node that is a common root to the literals, the left child
of this node has to be a leaf node. An example representation is found in Figure 3.

A vtree with all Shannon nodes is called right-linear vtree, and an SDD constructed with
such a vtree is equivalent to an OBDD. Default parameters for compilation use the primal
graph as an initial vtree with a random balance factor. Due to this random initialization,
compiled representations across multiple runs find different sized SDDs. The output of
MiniC2D is an NNF and a vtree that can be used to create a decision-SDD in linear time.



6 Symmetry Breaking and Knowledge Compilation

Figure 3 Decision-SDD representing the CSP from Figure 1 and the vtree used

4 Results

We considered four compilers: PySDD, ZSDD, D4 and MiniC2D. For all experiments a single
machine was used with 11th Gen Intel Core i7-1165G7 @ 2.80GHz × 8 running Ubuntu
20.04.3 LTS. We used the command line version of each tool, with their default parameters
and a 30 minute timeout. For consistent time measurement we used the linux command time.
We used the direct encoding to formulate the problems as CNF input. Each experiment was
run five times and averaged results are shown. PySDD used by default a balanced initial
vtree and post-compilation vtree search. D4 is the only compiler that is not deterministic,
as its default parameters include a random factor. In each of the following experiments we
looked at compilation time and size, defined by node count. We use the terms size and node
count interchangeably, as well as solution and model count.

Cliques of Not-Equals. As a first experiment we reconstructed the alldifferent constraint
using a clique of not-equal constraints with and without symmetry breaking. We created
10 CSPs with pairwise not-equal constraints amongst 10 variables X = {x1, x2, ..., x10} and
10 to 20 domain values for each xi D = {D1 = {1, ..10}, D2 = {1, ..11}, ..., D5 = {1, ..20}}.
We break the symmetry by ordering the variables such that x1 < x2 < x3 < ... < x10. The
number of literals ranges from 100 to 200, and number of clauses from 910 to 11360.

Table 1 presents the results with and without symmetry breaking, time expressed in
seconds. For all instances there is a large reduction both in compilation size and time that
is also proportional to the reduction in solutions. In larger instances, without symmetry
breaking the compilers time out, whereas with SB, these models compile within a few seconds.
We ignore ZSDD, as compilation fails due to excessive memory use. No tool was able to
compile the problem with domain size 18 and no SB, with only PySDD succeeding for domain
sizes 19 and 20.

N-queens Problems. The CSP is defined by N variables, each representing a row on a
chessboard and a set of not-equal constraints restricting the queens from attacking each other
on rows, columns and diagonals. We break horizontal and vertical symmetries by imposing
the constraints that the first queen has to be on the left half of the board and on the left
hand side of the last queen. These contain 16 to 144 literals and from 80 to 2680 clauses.



Balogh and O’Sullivan 7

Table 1 Time and size measurements for compiling clique of not-equals

Domain
size PySDD MiniC2D D4 Model count

No
symmetry
breaking

Time(s) Size Time(s) Nodes Time(s) Nodes
10 7.60 19768 19.03 668743.4 19.15 2616751 3628800
11 19.35 41929 16.15 2238849.8 69.02 9260088 39916800
12 57.68 81518 32.78 3320898.6 169.28 22268278 239500800
13 169.42 187757 30.49 7516849.8 369.00 50075258 1037836800
14 199.44 195015 65.95 16547016.4 652.62 91864534 3632428800
15 531.12 899580 85.47 26786678.8 1019.86 151085371 10897286400
16 170.63 307686 139.00 44592981 1321.55 246739107 29059430400
17 - - 141.09 33779490 - - 70572902400
18 - - - - - - -
19 376.82 897798 - - - - 335221286400
20 1685.89 5208404 - - - - 670442572800

With
symmetry
breaking

10 1.02 272 0.46 199 0.05 90 1
11 1.18 441 0.49 439.2 0.03 313 11
12 1.74 653 0.50 622.6 0.03 498 66
13 2.29 826 0.64 1075.4 0.04 746 286
14 2.80 1030 0.68 3632.4 0.05 1020 1001
15 4.10 1301 0.80 16621.8 0.05 1487 3003
16 5.20 1409 1.00 36275.8 0.06 1945 8008
17 7.58 1656 1.20 47154.8 0.07 2933 19448
18 9.91 2041 1.52 74144.8 0.08 3570 43758
19 8.45 2366 1.66 98443.4 0.09 4193 92378
20 12.60 2522 2.19 257089.6 0.11 5789 184756

Table 2 shows time and node count of each compiler, without and with symmetry breaking.
Around 50− 60% of the solutions get eliminated when breaking symmetry. For the 10-queens
problem, ZSDD compiles in only 7.3 minutes without symmetry breaking but when SB is
added, instead of 1480 we have 1530 clauses, compilation times out within 30 minutes. For
15-queens, only D4 was able to compile the formulation with SB, in 16.02 minutes. The
top-down compilers perform better, D4 obtains the most reduction both in time and node
count, MiniC2D following it for node count. Time reduction for all compilers ranges from no
reduction to 40%, with time for N < 10 being below 2 seconds. ZSDD achieves the most
reduction but is only able to compile the first 7 instances, and for N=9,10 significantly slower
than other tools.

VS-SDD [11] also look at the N-queens problem with N=8,9,10,11. The size of the
compiled SDDs differ, that can be caused by a different order of the CNF clauses, but they
are relatively close. They report the ratio between VS-SDD size and SDD size to be 73.1%,
85.8%, 88.5% and 94.3% for N=8,9,10 and 11 respectively. Our compilation using PySDD
and SB gets 61.3%, 62.1% , 56.9% and 57.1%.

Balanced Incomplete Block Designs. Next we looked at the Balanced Incomplete Block
Design (BIBD) problem, the arrangement of v distinct objects into b blocks such that each
block contains exactly k distinct objects, each object occurs in exactly r different blocks, and
every two distinct objects occur together in exactly λ blocks. We took the CNF formulations
from CSPLib5, with only instance (7,7,3,3,1) compiling within 30 minutes. This is expressed
using 833 literals and 7028 clauses and 10080 clauses for symmetry breaking added.

Here too, the top-down compilers, D4 and MiniC2D achieve better results. Both compile
within 30 minutes but only with symmetry breaking. ZSDD is terminated due to memory,
whereas PySDD due to time. Table 3 summarizes the compilation results.

5 https://www.csplib.org/Problems/prob028/models/

https://www.csplib.org/Problems/prob028/models/


8 Symmetry Breaking and Knowledge Compilation

Table 2 Time and node count measurements for compiling the N-queens problem

N PySDD ZSDD MiniC2D D4 Model count

No
symmetry
breaking

Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s) Nodes
4 0.039 35 0.551 7 0.071 54.4 0.025 35 2
5 0.079 154 0.533 44 0.093 238 0.018 204 10
6 0.138 117 0.631 23 0.148 190.4 0.018 150 4
7 0.380 571 0.875 218 0.202 1350.8 0.023 1240 40
8 0.821 976 2.524 456 0.274 3650.2 0.034 3308 92
9 2.551 2229 88.300 1651 0.411 15097.8 0.087 13076 352
10 11.312 4032 438.197 3833 0.605 37655.6 0.222 32986 724
11 169.036 10855 - - 1.407 157622.2 0.932 128993 2680
12 478.861 35047 - - 8.581 873364 5.323 693163 14200
13 - - - - 59.813 4688929.4 30.369 3556955 73712
14 - - - - 762.773 24971462.2 224.056 18161401 365596
15 - - - - - - - - -

With
symmetry
breaking

4 0.038 18 0.477 3 0.064 31 0.018 16 1
5 0.070 91 0.534 22 0.099 151.4 0.017 106 5
6 0.111 73 0.636 11 0.149 117.6 0.017 74 2
7 0.307 405 0.892 103 0.196 789.8 0.021 678 19
8 0.665 615 3.646 203 0.267 1608 0.027 1476 35
9 1.861 1432 88.147 829 0.398 7639.2 0.054 6404 158
10 6.700 2380 - - 0.565 17155.6 0.124 14767 289
11 75.475 6522 - - 1.408 73984.6 0.482 61224 1133
12 240.976 18214 - - 5.092 381331.4 2.475 294589 5564
13 - - - - 49.265 2230340.8 16.634 1597131 31051
14 - - - - 617.260 11157575.4 112.269 7352257 141988
15 - - - - - - 961.469 48590750 940824

Table 3 Compilation of the instance (7,7,3,3,1), where - denotes timeout

PySDD ZSDD MiniC2D D4 Model count
Time(s) Size Time(s) Edges Time(s) Edges Time(s) Edges

No SB 1800 - 67.4 - 1800 - 874.3 - -
With SB 1800 - 66.7 - 560.91 67153530 52.6 22716852 151200

5 Conclusion and future work

In general the top-down compilers reduce most the compilation size when breaking symmetry
and they also compile faster. It is worth keeping in mind that the tools obtain compiled
representations with different properties, so comparison among each other is not the focus.
Rather we focus on compilations with and without symmetry breaking. In these highly
symmetrical problems compilation size always reduces, but this might not be the case for
problems with less symmetry. For the clique of not-equals compilation size reduction is
proportional to solution reduction, whereas for N-queens more varied gap exist for the
different compilers.

In SDDs a decision node is removed if the corresponding Boolean function does not depend
on variables in either the left or right subtree. So for instance if a subset of variable-value pair
is compatible with all solutions and these literals have a common root in the vtree without
any other literal in that tree, decision nodes with this common root can be eliminated. But
if we break the symmetry and eliminate some combinations of these pairs the common root
cannot be eliminated anymore. This could be one case where symmetry breaking could
increase the SDD size, especially if no vtree is found to overcome this.

Formulating symmetry breaking clauses at CNF level is not an easy task, especially
without introducing auxiliary variables. The maximal encoding [15] on the other hand,
breaks interchangeability symmetry by formulation. As next steps we will investigate the
relation between knowledge compilation and the maximal encoding.



Balogh and O’Sullivan 9

References
1 Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-breaking

for boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC
2003. ACM, 2003.

2 Anicet Bart, Frédéric Koriche, Jean-Marie Lagniez, and Pierre Marquis. Symmetry-driven
decision diagrams for knowledge compilation. In ECAI 2014 - 21st European Conference on
Artificial Intelligence. IOS Press, 2014.

3 David A. Cohen, Peter Jeavons, Christopher Jefferson, Karen E. Petrie, and Barbara M. Smith.
Symmetry definitions for constraint satisfaction problems. Constraints An Int. J., 2006.

4 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Proceedings of the 41th Design Automation Conference,
DAC 2004, San Diego, CA, USA, June 7-11, 2004. ACM, 2004.

5 Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
2011. IJCAI/AAAI, 2011.

6 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
2002.

7 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Theory and Applications of Satisfiability Testing - SAT 2016 -
19th International Conference, 2016, Proceedings. Springer, 2016.

8 Jinbo Huang and Adnan Darwiche. Using DPLL for efficient OBDD construction. In SAT
2004 - The Seventh International Conference on Theory and Applications of Satisfiability
Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004.

9 Jean-Marie Lagniez and Pierre Marquis. An Improved Decision-DNNF Compiler. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017.
ijcai.org, 2017.

10 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
2014.

11 Kengo Nakamura, Shuhei Denzumi, and Masaaki Nishino. Variable shift SDD: A more succinct
sentential decision diagram. In 18th International Symposium on Experimental Algorithms,
SEA 2020.

12 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in savile row. Artif. Intell., 2017.

13 Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Zero-suppressed
sentential decision diagrams. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 2016. AAAI Press, 2016.

14 Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015. AAAI Press, 2015.

15 Steven D. Prestwich. Full dynamic substitutability by SAT encoding. In Principles and
Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004,
Toronto, Canada, September 27 - October 1, 2004, Proceedings. Springer, 2004.

16 Steven D. Prestwich and Andrea Roli. Symmetry breaking and local search spaces. In Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Second International Conference, CPAIOR 2005, Prague, Czech Republic, May 30 -
June 1, 2005, Proceedings. Springer, 2005.

17 Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel, and
Sarfraz Khurshid. A study of symmetry breaking predicates and model counting. In Tools
and Algorithms for the Construction and Analysis of Systems - 26th International Conference,
TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, Proceedings, Part I. Springer, 2020.


	1 Introduction
	2 Symmetry breaking in Constraint Programming
	3 Knowledge Compilation
	3.1 D4 : Decision-DNNF
	3.2 PySDD : Sentential Decision Diagram(SDD)
	3.3 ZSDD : Zero Suppressed Sentential Decision Diagram
	3.4 MiniC2D : Decision-SDD

	4 Results
	5 Conclusion and future work

