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1 Problem Statement

Given a set of Boolean inputs and outputs and an underlying specification, the problem of
functional synthesis is to synthesize outputs in terms of inputs such that the specification is
met. Formally, let X be the set of inputs x1,...,x, and Y be the set of outputs y1, ..., Ym,
given a specification ¢(X,Y"), synthesise a function vector F : (f1(X),..., fm (X)) such that
VX(3IYo(X,Y) < (X, F(X)). Boolean functional synthesis is a fundamental problem
whose origin traces back to Boole’s seminal work, which was subsequently pursued with the
focus of decidability by Lowenheim and Skolem. Boolean functional synthesis is also called
Skolem functional synthesis in the literature, and it has wide-ranging applications, including
QBEF solving [29], automated program repair and synthesis [33], and cryptography [23].

From a complexity-theoretic perspective, there exists an instance for which Boolean
functional synthesis must take super polynomial time [3]. However, there exists a diverse
set of algorithmic techniques that handle practical real word instances to synthesize Skolem
functions, including extracting functions from proof of the validity of VX3Y p(X,Y), know-
ledge complication based techniques [3, 2], and the usage of incremental determinization [29].
Although, the recent years have seen significant performance improvement in solving more
instances, but scalability remains the holy grail.

2  Our Contributions

In this section, we give an overview of our contributions towards Boolean functional synthesis
and its applications.

2.1 Manthan [10]

We proposed a data-driven based approach, called Manthan [10]. Manthan takes advantage
of recent advances in machine learning, constrained sampling, and automated reasoning for
efficient Skolem functional synthesis.

Data Generation: The state of the art machine learning techniques use training data repres-
ented as a set of samples where each sample consists of valuations to features and the
corresponding label. In our context, we treat X as the features and Y as labels. Unlike
the standard setup of machine learning wherein for each assignment to X, there is a
unique label, i.e. assignment to Y, the relationship between X and Y is captured by
a relation and not necessarily a function. To this end, we design a weighted sampling
strategy to generate a representative data set that can be fitted using a compactly sized
classifier. The weighted sampling strategy, implemented using state of the constrained
sampler, seeks to uniformly sample input variables (X) while biasing the valuations of
output variables towards a particular value.
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Figure 1 Manthan Framework

As the first step, Manthan samples the satisfying assignments of ¢ using an adaptative
weighted sampling strategy using state-of-the-samplers [14, 13]. The generated samples
would be considered as data to learn candidates in the later stages of Manthan.

Dependency-Driven Classifier for Candidates: Given training data viewed as a valuation

of features (X) and their corresponding labels (Y), a natural approach from machine
learning perspective would be to perform multi-class classification to obtain Y = h(X),
where h is a symbolic representation of the learned classifier. Such an approach, however,
can not ensure that h can be expressed as a vector of Boolean functions. To this end, we
design a dependency aware classifier to construct a vector of decision trees corresponding
to each y;, wherein each decision tree is expressed as a Boolean function.

The generated samples are used to learn an approximate candidate vector F'. The function,
fi, corresponding to each output variable f;, is learned as a decision tree classifier. The
valuations of X and Y in samples generated are considered as the features, while the
respective valuation of y; is marked as the label. Variables y; and y; satisfy an ordering
constraint y; <q y;; if y; appears as the decision node in the decision tree learned for the
candidate f; corresponding to y;. Manthan discovers requisite variable ordering constraints
(among Y variables) on the fly as the candidate functions are learned. Given the partial
variable ordering, Manthan extracts a TotalOrder for a valid variable ordering among Y
variables.

Proof-Guided Repair: Since machine learning techniques often produce good but inexact

approximations, we augment our method with automated reasoning techniques to verify
the correctness of decision tree-based candidate Skolem functions. To this end, we perform
a counterexample driven refinement approach for candidate Skolem functions. To fully
utilize the impressive test accuracy attained by machine learning models, we design a
proof-guided refinement approach that seeks to identify and apply minor repairs to the
candidate functions, in an iterative manner, until we converge to a provably correct
Skolem function vector. In a departure from prior approaches utilizing the Shannon
expansion and self-substitution, we first use a MaxSAT solver to determine potential
repair candidates, and employ unsatisfiability cores obtained from the infeasibility proofs
capturing the reason for current candidate functions to meet the specification, to construct
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a good repair.

Essentially once, we have candidate vector F', Manthan formally verifies whether f is the
required Skolem function vector by doing a satisfiability check on formula E(X,Y,Y”) :
(X, Y)AN (X, Y)A (Y < F) [3]. E(X,Y,Y’) formula is essentially checking if there
exists a valuation of X for which 3Y ¢(X,Y) evaluates to True, and o(X, F (X)) evaluates
to false. Y is fixed as per valuation of the output of current candidate functions; that
is, y; is the same as f;(X). If E(X,Y,Y") is UNSAT, the candidate function vector is a
Skolem function vector, and Manthan returns F', else we have a counterexample, and the
candidates need to undergo a repair iterations to fix the counterexample. The candidate
functions are repeatedly tested for correctness and repaired. Manthan uses a MaxSAT
solver to minimize the number of repairs required for each counterexample, that is, it uses
MaxSAT to identify a good counter examples. In the repair iterations, using an unsatcore
based approach, Manthan attempts to find the reason why (X, F (X)) evaluates to false
along with counterexample valuation of X. Manthan then generates a repair formula
using the unit clauses in the unsatcore to fix the counterexample.

We compare Manthan performance with the state of the art tools, viz. BFSS [3], C2syn [2],
and CADET [29] on a set of benchmarks drawn from QBFEval-17-18 [1], Disjunctive,
Factorization and Arithmetic data set [3]. Manthan significantly improves upon state of
the art, and solves 356 benchmarks while the state of the art tool can only solve 280; in

particular, Manthan solved 60 more benchmarks that could not be solved by any of the tools.

2.2 Manthan2 [12]

Although Manthan led to a significant improvement of the state-of-the-art, a large number of
problems remain beyond its reach (and other synthesis engines). Therefore, we tackled the
scalability challenge faced by Manthan. Specifically, we identify and address the following
four key performance bottlenecks:

1. Over-reliance on Data-driven Learning: Manthan seeks to learn every function only
based on samples and in turn, does not take full advantage of the white-box access to the
formula ¢(X,Y).

Remedy: We identify a subset of variables with unique Skolem function and extract
these functions with an interpolantion-based technique, thereby reducing the number
of functions that need to be learned.

2. Inefficient Learning: We observe that for some of the benchmarks, Manthan spends as
much as 74% of its total running time on learning candidate functions from data.

Remedy: Instead of relying solely on binary classification, we propose a clustering-
based approach that can take advantage of multi-classification to learn candidate
functions for sets of variables at a time.

3. Under-usage of Determined Features: While the conventional wisdom in formal
methods is to perform variable elimination whenever possible, such an elimination robs
the learning phase of determined features.

Remedy: Whenever it is determined that a candidate function for a variable is indeed
a Skolem function, we do not substitute for and eliminate this variable, retaining it
instead as a possible feature during learning and repair.
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4. Dependency-Agnostic Repair: Including variables from Y as features leads to de-
pendencies among learned candidate functions. Manthan’s use of MaxSAT queries in
determining functions to be repaired fails to consider these dependencies, frequently

resulting in an unnecessarily large number of repairs.
Remedy: We propose the use of lexicographic MaxSAT for identifying repair candidates

so as to take into account dependencies among candidate functions.

We implement these improvements in the framework called Manthan2. Manthan2 shows
On the same 609

significantly improved runtime performance compared to Manthan.
benchmarks, Manthan2 can synthesize a Boolean function vector for 509 instances compared
to 356 instances solved by Manthan — an increment of 153 instances over the state-of-the-art.
We used Open-WBO [22] for unweighted MaxSAT queries, RC2 [16] for LexMaxSAT
queries, and PicoSAT [7] to compute UnsatCore. Further, we used a library based on
UNIQUE [32] to extract unique Skolem functions. Finally, we used Scikit-Learn [25] to
learn decision trees and ABC [9] to manipulate Boolean functions. All our experiments were
conducted on a high-performance computer cluster with each node consisting of a E5-2690
v3 CPU with 24 cores and 96GB of RAM, with a memory limit set to 4GB per core. All
tools were run in single-threaded mode on a single core with a timeout of 7200 seconds.
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Figure 2 Manthan2 vs Manthan vs other state-of-the-art tools. Total instances 609. Timeout:7200

seconds

C2Syn [2] BFSS [3] CADET [29] Manthan [10] Manthan? [12]
206 247 280 356 509
Table 1 Instances solved by each tool. Total instances 609. Timeout:7200 seconds

Figure 2 shows a cactus plot to compare the run-time performance of different synthesis
tools. The x-axis represents the number of benchmarks and y-axis represents the time taken,
a point (z,y) implies that a tool took less than or equal to y seconds to find a Skolem
function vector for £ many benchmarks out of total 609 benchmarks.

As shown in Figure 2, Manthan?2 significantly improves on the state of the art techniques,
both in terms of the number of instances solved and runtime performance. In particular,
Manthan2 is able to solve 509 instances while Manthan can solve only 356 instances. Table 1

list the number of instances solved by each of the state-of-the-tools.
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Encouraged by Manthan’s scalability, we will seek to extend the above approach to
related problem domains such as automated program synthesis, program repair, and reactive
synthesis. In many functional synthesis applications like circuit repair, we need to find small
size functions. Unfortunately, we are not aware of any techniques that attempt to synthesis
the smallest possible Skolem functions. Coming up with a technique for Boolean functional
synthesis with an objective of learning smallest sizes functions is an interesting direction
for future work. Manthan is available open sourced at https://github.com/meelgroup/
manthan.

2.3 Program Synthesis as DQF(T) [11]

The improvements in Skolem functional synthesis have paved the way for studying variants
of functional, which are harder from a complexity-theoretic perspective. One such variant
of interest is Dependency Quantified Boolean Formulas (D@QBF), which generalizes the well
known notion of Quantified Boolean Formulas (QBF) VX3Yp(X,Y) by allowing explicit
specification of dependency for existentially quantified variables, also known as Henkin
quantifiers [15]. The expressiveness of DQBF comes at the cost of the hardness from a
complexity-theoretic perspective: in particular, DQBF is NEXPTIME-complete [26].

The formula ¢ = VX 371y FH2q, .. FHmy (XY is considered to be a DQBF formula,
where each H; C {z1,...,2,}. H; is considered as Henkin dependency corresponding
to y;- A DQBF formula is considered to be True if there exists a function vector F' :
(f1(Hy),..., fm(Hy)) such that ¢(X, F) is a tautology, otherwise DQBF is considered to be
False. The problem of synthesizing such function vector F' is considered as problem of Henkin
synthesis. Henkin synthesis generalizes Skolem synthesis by allowing explicit specification of
dependency for existentially quantified variables, also known as Henkin dependencies.

A crucial ingredient in the NP revolution was the reduction of key problems such as
planning [17] and bounded model checking [8] to SAT. Such reductions served as a rich source
of practical instances, and at the same time, planning and bounded model checking tools
built on top of SAT achieved fruits of the progress in SAT solving and thereby leading to
even wider adoption, and contributing to a virtuous cycle [21]. Our investigation in this work
is in a similar spirit. The past few years have seen a surge of interest from diverse viewpoints
such as the development of Dependency Quantified Boolean Formulas (DQBF') proof systems,
the study of restricted fragments to development of efficient DQBF solvers [20, 29, 34]. In
this work, we focus on a key problem in programming languages, program synthesis, and
investigate its relationship to DQBF and its generalization, Dependency Quantified Formulas
modulo Theory, henceforth referred to as DQF(T). Given a specification ¢(X,Y’) over the
set of inputs X and the set of outputs Y, the problem of program synthesis is to synthesize
a program f such that Y = f(X) would satisfy the specification .

The earliest work on synthesis dates back to Church [18], and the computational intract-
ability of the problem defied development of practical techniques. A significant breakthrough
was achieved with the introduction of Syntax-Guided Synthesis (SyGuS) formulation wherein
in addition to ¢, the input also contains a grammar of allowed implementations of f. The
grammar helps to constrain the space of allowed implementation of f, and therefore, it also
allows development of techniques that can efficiently enumerate over the grammar. While
grammar has also been used as an implicit specification tool for few selected applications,
it is mainly used to aid the underlying solver by constraining the search space. [4, 5, 6].
Often, the end user is primarily concerned with any function that can be expressed using
a particular theory T. For the sake of clarity, we use the term T-constrained synthesis to
characterize such class of synthesis problems. T-constrained synthesis is a subclass of SyGusS.
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Of particular interest is the recent work in the development of specialized algorithms focused
on T-constrained synthesis, e.g., counterexample-guided quantifier instantiation algorithm in
[30]. Secondly, recent studies have also highlighted that for a wide variety of applications,
the usage of grammar is solely for the purpose of aiding solver efficiency, and as such have
advocated usage of more expressive grammars for a given SyGuS instance [24].

The primary contribution of our work is establishing a connection between Theory-
constrained synthesis and DQF(T). In particular, our work makes the following contributions:

From T-constrained synthesis to DQF(T): We present an reduction of T-constrained syn-
thesis to DQF(T). DQF(T) lifts the notion of DQBF from the Boolean domain to general
Theory T. We view the simplicity of the reduction from T-constrained synthesis to
DQF(T) as a core strength of the proposed approach.

Efficient T-constrained synthesizers for T=bitvectors: The reduction to DQF(T) opens up
new directions for further work. As a first step, we focus on the case when the T is
restricted to bitvector theory, denoted by BV. We observe that the resulting DQF(BV)
instances can be equivalently specified as a DQBF instance. We demonstrate that our
reduction to DQBF allows us to simply plug-in the state of the art DQBF solvers [34, 31].

Let us know bring our attention towards the reduction of T-constrained synthesis to
DQF(T). A key strength of the reduction is its simplicity. Algorithm 1 formalizes the desired
reduction. Before discussing the details of Algorithm 1, let us define the notation of CallSigns.
We refer to the function and its (ordered) list of arguments at an invocation (within ¢) as
its call signature. The set of all call signatures of a function symbol f in ¢ is referred by
CallSigns(f). Note that the number of invocations of a function may not match |CallSigns(f)|.
For example, the following formula ¢ : Va,b,c¢ 3f f(a,b) A f(b,c) A f(b,a) A f(a,b), has
4 invocations of f while CallSigns(f) = {(a,b), (b,¢), (b,a)}. Note that (a,b) and (b, a) are
considered as two different CallSigns of f.

In Algorithm 1 the reduction of ¢ to DQF(T) formulation is discussed, where ¢ is a
specification over the vocabulary of background theory T with a set of typed function symbols
{f1, f2, ... fm} such that for all f;, |CallSigns(f;)] = 1. The important point to note is that
the Henkin quantifiers must be carefully constructed so that each f; depends only on the set
of variables that appear in its argument-list.

Algorithm 1 Reducing single-callsign instance ¢ to DQF(T)

Input: A background theory T, a set of typed function symbols {f1, fa,... fm}, a specification
¢ over the vocabulary of T
1 Let X = Uf,,{h | h € CallSigns(f:)}
2 Substitute every invocation of f; with a fresh variable y; in ¢
3 Define H; = Set(h) as {h|h € CallSigns(f;)}
Output: VX3H1y,. 32y, Iy o(X,Y)

Now, let us turn our attention to the case when there exist a function f; such that
|CallSigns(f;)] > 1. In such cases, we pursue a Ackermannization-style technique that
transforms ¢ into another specification ¢ such that every function f; in ¢ has |CallSigns(f;)| =
1 (Algorithm 2). Note that this transformation allows the subsequent use of Algorithm 1
with ¢ to complete the reduction to DQF(T). The proposed transformations in Algorithm 2
are linear in the size of the formula like the transformation introduced in [27], however
Algorithm 2 introduces lesser number of new variables.

The essence of Algorithm 2 is captured in the following two transformations:
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Algorithm 2 Reducing multiple-callsign to single-callsign instance

Input: A background theory T, a set of typed function symbols {f1, fo,... fm}, a specification ¢
over the vocabulary of T such that ¢; = |CallSigns(f;)]

1 fori=1 tom do
2 if |CallSigns(f;)| > 1 then
3 Add a fresh (ordered) set of variables Z; such that |Z;| = |CallSigns(f;)[0]|
4 for j€[0...(¢; —1)] do
5 Replace every f; whose args(f;) = CallSigns(f;)[j] with fij
6 Add constraint (args(fij) =7Z;) > fij(args) = ff"(Zi) to ¢
7 end
8 CallSigns(f;) + CallSigns(f;) U{Z;}
9 end
10 end
Output: A set of typed function symbols {7, fZ,... fl, o o FEmA a specification ¢ over

the vocabulary of T such that Vi, j we have |CaIISigns(ff)| =1

(Line 5) We substitute instances of every call signature of f; with fresh function symbols
flj (that corresponds to the j** call signature of f;). This reduces the formula from multiple-
callsign to a single-callsign instance.

(Line 6) Introduction of an additional constraint for each f; that forces all the functions fij

(introduced above) to mutually agree on every possible instantiation of arguments. Specifically,
it introduces a fresh function symbol f'* and a set of fresh variables zi,..., 2% € Z; such
that, for all args(f/) argument lists, (args(f)) = Z;) = fl(args) = f'(Z:), where
jef0... li—4]
When T is bitvector (BV): When the specification ¢(X,Y) is in BV. If ¢(X,Y) is a
multiple-callsign instance, we use Algorithm 2 to covert it to a single-callsign instance
@(X,Y). We then use Algorithm 1 to generate the DQF(BV) instance of $(X,Y) as
vX3g, . 3Hn gjmgﬁ(X’, }A/') Finally, we solve the DQF(BV) instance by compiling it down
to a DQBF instance, thereby allowing the use of off-the-shelf DQBF solvers.

As the first step to DQBF compilation, we perform bit-blasting over ¢ to obtain ¢'.

VX3, L 3y (R, V) = vx'3X V. 3y, 3y J(XL YY) (1)

The objective of our experimental evaluation was to study the feasibility of solving
BV-constrained synthesis via the state-of-the-art DQBF solvers. To this end, we perform an
evaluation over an extensive suite of 645 general-track bitvector (BV) theory benchmarks from
SyGuS competition 2018, 2019. We used CVC4 [30], EUSolver [5], ESolver [35] as SyGuS-
tools. CVC4 was also used in its BV-constrained version. We used state-of-the-art DQBF
(QBF) solvers CADET [28], Manthan [10], DepQBF [19], DCAQE [34] and DQBDD |[31].

Table 2 represents the instances solved by the virtual best solver for SyGuS, BV con-
strained, and DQBF tools.

Table 2 Number of SyGusS solved using different techniques. Timeout 900s.

Total SyGuS-tools BV-constrained DQBF-based

SyGuS

645 513 606 610
Instances

As shown in Table 2, with syntax guided synthesis, we could synthesize the functions
for 513 out of 645 SyGuS instances only, whereas, with BV-constrained synthesis, we could
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solve 606 such instances. Surprisingly, BV-constrained synthesis performs better than the
syntax-guided synthesis. Table 2 also shows that the DQBF based synthesis tools perform
similar to BV-constrained synthesis tools for SyGuS instances; this provides strong evidence
that the general purpose DQBF solvers can match the efficiency of the domain specific
synthesis tools.

Syntax-guided synthesis has emerged as a dominant paradigm for program synthesis.
Motivated by the impressive progress in automated reasoning, we investigate the usage of
syntax as a tool to aid the underlying synthesis engine. To this end, we formalize the notion
of T-constrained synthesis, which can be reduced to DQF(T). We then focus on the special
case when T = BV. The corresponding BV-constrained synthesis can be reduced to DQBF,
highlighting the importance of the scalability of DQBF solvers. Our empirical analysis shows
that T-constrained synthesis can achieve significantly better performance than syntax-guided
approaches. Furthermore, the general purpose DQBF solvers perform on par with domain-
specific synthesis techniques and thereby supporting the argument of viewing DQBF as a
general purpose representation language for representation task. We believe that our results
will motivate further research into DQBF; the rewards of which can be reaped by program
synthesis tools. The tool to convert a program synthesis instances in bit vector theory to a
DQBF formula is available open-sourced at https://github.com/meelgroup/dequs.
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