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1 Introduction

Research on conjectures making systems in the context of discrete mathematics is a topic
that goes back to the late 1950s [10]. Within CP, some initial research on the generation of
implied constraints was done [5] and the most recent work focuses on model and constraint
acquisition [9] rather than on conjecture making. Within OR, Hansen’s AutoGraphiX
system [7] focuses on finding unrelated bounds using Variable Neighbourhood Search.

Four reasons motivate our work: (i) to highlight that CP can contribute to the automatic
discovery of conjectures, (ii) to systematically search sharp bounds on characteristics of
objects that show up in combinatorial problems, (iii) to stress the need to develop strongly
interrelated knowledge, (iv) by the fact that bounds are an essential feature of branch-and-
bound methods in optimisation but also a weakness of CP [6, 8]: the development of sharp
bounds that consider several interrelated characteristics is still a manual process [2, 4]. Our
approach is unique among all works for conjectures generation, as the result is not a set, but
rather a graph of conjectures, linked by projection operators. Our contributions are:

We introduce the concept of map of sharp bounds as a set of interrelated conjectures
providing sharp lower and upper-bounds wrt the characteristic of a combinatorial object.
For each conjecture on a sharp bound, the map gives some extremal characteristics i.e.,
the characteristic values common to all combinatorial objects achieving the bound.
We demonstrate the usefulness of CP for acquiring such maps over digraphs.

The significance of maps is twofold. Beyond sharp bounds, a map brings together the
relations between several sharp bounds and the structure of combinatorial objects reaching
each bound under the same edifice.

We introduce the concept of a map that presents a set of conjectures for sharp bounds
and their logical relations.

2 Conjectures map as a symbolic piece of knowledge

We introduce the concept of a map of conjectures as a way to reveal the links between a set of
conjectures related to sharp bounds for a characteristic of a combinatorial object. Our goal
is to describe conjectures on sharp bounds of characteristics of a combinatorial object, e.g. a
digraph, a tree, and to organise these conjectures into a single structure, a map of sharp
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bounds, which (i) systematically interconnects these conjectures, and which (ii) describes the
structure of the combinatorial objects for which the bounds are reached.

▶ Definition 1. Given a finite set of input characteristics P and an output characteristic
o /∈ P, a map of sharp upper bounds Mo ≤

P is defined as a digraph where:

Each node of the map is associated with a subset P ⊆ P of input characteristics and
corresponds to a maximum conjecture of the form o ≤ f(P ). This inequality is tight, i.e.
there exist values that can be given to the parameters P in order to reach the equality.
In addition, a node contains maximality conjectures, at most one per characteristic q

in the complement of P wrt P, represented by the symbolic equality q = gq(P ), where
gq is a function defined over realisable parameters values of P and called a maximum
characterisation, and expressing the following property: for any combination of parameters
P reaching the maximum f(P ), the characteristic q is equal to gq(P ).
Each arc from conjecture o ≤ fi(Pi) to conjecture o ≤ fj(Pj) corresponds to a projection
from a subset Pi of input characteristics to a subset Pj of input characteristics, by
eliminating a characteristic qi,j , i.e. Pj = Pi \ {qi,j}. The arc is labelled with an equality
qi,j = gqi,j (Pj) where gqi,j (Pj) is the value given to qi,j to reach the equality in the
conjecture o ≤ fj(Pj). The equality qi,j = gqi,j

(Pj) is called a maximality conjecture.

In a map, there is one output characteristic that we bound using the other characteristics
called input characteristics. The output characteristic is the bounded characteristic, while the
input characteristics are the bounding characteristics. The maximum conjecture provides a
bound on the output characteristic wrt the characteristics in P . The maximality conjectures
indicate the values taken by the characteristics not in P when the bound is reached.

▶ Example 2. Fig. 1 illustrates the map concept. As an example of combinatorial objects,
we use in this paper digraphs with these characteristics: the number v of vertices, the
number a of arcs, the number c (resp. s) of connected components (resp. strongly connected
components), the number c of vertices of the smallest connected component.

Node (A)
❶ a ≤ (c − 1) · c2 + (v − (c − 1) · c)2

Node (B)
❷ a ≤ c2 + (v − c)2

⑤ c = (v = c) ? 1 : 2

Node (C)
❸ a ≤ (c − 1) + (v − (c − 1))2

⑥ c = (c = 1) ? v : 1

Node (D)
❹ a ≤ v2

⑦ c = v ⑧ c = 1

⑤ ⑥

⑦ ⑧

{v, c, c}

{v, c} {v, c}

{v}

K7
v = 7,
a = 49

K2 K5
v = 7, c = 2, a = 29

K1 K1 K5
v = 7, c = 3, a = 27

K2 K2 K3
v = 7, c = 3, c = 2, a = 17

Figure 1 Map Ma ≤
{v,c,c} with the sharp upper-bounds ❶, ❷, ❸, ❹ for the number of arcs in a

digraph; each node presents an example in brown: given a value for the characteristics attached to
the node, a graph reaching the maximum is described, as a union of cliques Ki, with i vertices, e.g.
in node (B), given the assignments v = 7 and c = 2, the digraph with 2 cliques K2, K5 reaches the
maximum 29 for the number a of arcs; cond ? x : y denotes x if condition cond holds, y otherwise.
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2.1 A constraint approach for acquiring symbolic equations
The search for sharp bounds leads to the identification of equations in which the left-hand side
is an output or a secondary characteristic, and the right-hand side is a formula involving input
and secondary characteristics. Rather than applying a bottom-up approach that generates
formulae of increasing complexity, we adopt the following strategy. As we aim at finding
simple formulae, we use three complementary classes of formulae that turned out to appear
concomitantly in a map: (1) Boolean formulae involving k arithmetic conditions linked by
a single commutative logical operator or by a sum, (2) simple conditional formulae, and
(3) formulae over polynomials that can share common sub-expressions. A first attempt to
use only polynomials without common sub-expressions missed some formulae and quite often
provided too complicated formulae. Based on the metadata, the CP approach restrict the
space of possible formulae like those in the map of Fig. 1, generate parameterised candidate
formulae and finally fix the values of their parameters using data.

Comparing the conjectures founds with proved bounds of the constraint catalogue [1],
the Bound Seeker retrieves 66.66% of the bounds of the constraint catalogue, even if the
resulting formulae have sometimes a different form.

3 Conclusion

We introduce a structure that connects a set of sharp bounds. Based on this structure, we
propose a constructive approach to acquire a set of interrelated conjectures on sharp bounds.
This work opens a new application domain for CP for automated conjectures-making systems.
It creates a new line of research to those already reported in a recent survey on machine
learning for combinatorial optimisation [3].
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